
17 Fourier Expansion

Fourier expansion and its salient features are summarized.
We should pay due attention to the relation between the
decay rate of the Fourier coefficients and the smoothness of
the function. Impacts of Fourier's idea on Modern Mathe­
matics is also briefly outlined.

Key words: Fourier expansion. periodic extension, Gibbs
phenomenon. Riemann-Lebesgue lemma, countable.

Summary:
(1) Three basic facts (17.5) for piecewise smooth functions are worth
memorizing as well as the formal expansion formulas in 17.1.
(2) Fourier coefficients decay faster if the function is smoother. This is
due to the Riemann-Lebesgue lemma (17.11-13).
(3) To use Fourier expansion to solve a boundary problem. a problem­
adapted form should be looked for (17.15-17).
(4) Attempts to rationalize Fourier series almost dictated modern math­
ematics (17.18).

17.1 Fourier expansion of function with period 2£: A formal
statement. If f is a periodic function with period 2.e. then

ao x [ n~x . n~x]
f(x) = 2 +~ an cos -.e- + bn sm -.e- for x E [-.e. .e].

where

1 r nt:a: 1 r . nmz
an = l J_£ f(x)cos -.e-dx. bn = €L, f(x) sm -.e-dx.

Or. we may write
+oc

f(x) = L cneinu/l.

n=-O(;

(17.1)

(17.2)

(17.3)

where
en =..!.. fi !(x)e- in u / ( . (17.4)

2£ -i

This is what Fourier asserted. but he could not convince mathemati­
cians he admired (~1.6. 1.7. 17.18). The formal series (17.1) or (17.3)
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are called Fourier series. If we may freely exchange the order of sum­
mation and integration, then it is easy to check Fourier's claim (see also
20.14).
The real value condition of J in terms of its Fourier coefficients is
Cn =C_ n •
The best introductory book of Fourier analysis is E. Korner's Fourier
Analysis (Cambridge, 1988). For solved problems, Schaum's outline
series is useful as usual.

Discussion.
(A) Fourier expansion as least square approximation.
Let

!,'
ao '" [ 7l1iX • 7l1iX]g(x) ="2 + L., an cos-l- + bn sin -l- .

n=l

(17.5)

(17.6)

where an and bn are given by (17.3). The Fourier coefficientsminimizes the following
integral:

[ii If(.r) - g(xWdx.

"'e say g is the closest to f ill the L2-norm (-20.5). That is, the Fourier expansion
is understood as the least square approximation of a function in terms of trigono­
metric functions up to a given wavelength (-20.13).
(B) Acceleration of convergence. The convergence of Fourier series can be
accelerated. Consider in (-IT. 1r)

:x; 3

f(x) = '"(-1)"-4
11

sin n.T
L., n-1
n=2

'Ye know
:x; •

L(-l)n~= ~.
n=l n 2

Let us subtract this from f:

:x; •

f() x . L( I)'" S111 nxx - - =smx+ - --.
2 n5 - n

n=2

(17.7)

(17.8)

(17.9)

The series should be faster convergent than the original one, so this subtraction
trick is useful in numerical calculation.

Try a similar trick to
<XL COST/X.

n=l n + a
(17.10)

where a > O.
(C) Crystal periodicity. Let f (r) be a function defined on 113 with the following
'lattice structure':

f(r + a;) = f(r)
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for three (linearly independent) vectors ai (i = 1. 2,3) called the crystal lattice
vectors. The parallelepiped spanned by these vectors is called the unit cell. Such a
function can be expanded as

f(r) =LAh exp(21Tih· r),
h

(17.12)

where the summation is over all the vectors h such that

3

h=Lh;b;
;=1

(li.13)

for any integer hi. The vectors bi (i = 1. 2. 3) called reciprocal lattice tlectors are
give by

b1 = a2 l~ a3 . (li.14)

and cyclical permutations of the suffices. where l ~ is the volume of the 'uint cell':

(li.15)

The expansion coefficient can be obtained by

Ah=T~ r drf(r)exp(-27Tih·r).
Ie Jcell

(li.16)

(li.Ii)
1- 20cosJ'+a2 '

Exercise.
(1) Fourier-expand the following functions of:r (here 0 is a real such that 0 E (-1. 1).

1- 0 2

and
:r sin :r

1 - 20cos r + a2 '
(li.lS)

See 16D.IO.
(2) Fourier expand

fIx) = [cosuz]. (li.19)

(3) Find the Fourier expansions of the following graphically given periodic func-
tions. (pen'od :<.n.)

( hJ

o

+/

o
245 -/



( rJ)

/

(C)

-i<..
(4) Let f(x) = Ax2+Bx+C in (-11',11'), where A,B,C are constants. Find
its Fourier expansion, or show

A7l'2 0<: cos nx 00 sin nx
Ax2 + Bx + C = 3 + C + 4.42:(-1)"--nz - 2B 2:(-1)"-1'1-' (17.20)

,,=1 ,,=1

If the range is (0. 21l'). then

4.411'2 IX cos nx 0<: sin nx
Axl! + BJ.' + C = -3- + B7l' + C + 4..1 L --;;2 - 2B L -n-' (17.21)

n=1 ,,=1

Wirh the aid of these expansions. we can compute the following series
:x. ec

"'"' Slnnl1 x. "'"' (-1)n COns 2
n x . )L L.. (17.22

n=1 n=1

17.2 Periodic extension of function. If f is defined only on [-.e. .e].
or one is interestedin f on this interval. f can be extended to a periodic
function F defined on the whole R. and we may use 17.1. There are
many ways to define a function which is a periodic extension of f

,
, ,

, ~ - ,
, ,
I ,

I' r • ,
I,, \... I ~

-'r'

I
1 (

"

r,
r

)

As we will discuss in detail later (-17.15-) we should, in practice,
make the extended function F to be as smooth as possible.

17.3 Theorem [Weierstrass]. Any continuous function on (a , b) can
be approximated in the sup-norm sense233 by a polynomiaL More pre-

233The sup-norm 1IIlsup is defined by Ilf(x)lIsup = sUP:rE(a,b) If(x)I, That is, we
measure the distance between two functions f and 9 by the widest possible separa­
tion of their graphs. See 20.3 for 'norm,'
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cisely, for a given continuous function 1 defined on (a,b). and for any
specified positive € there is a polynomial P such that 111 - Pllsup < E.
D

We say that the set of polynomials is complete in the set of con­
tinuous functions.

It is straightforward to generalize the theorem for multivariable
functions.

Discussion: Theorem(Hausdorff) on the moment problem.
Let [a, b] be a finite interval and let f, 9 be continuous functions. Then, if

)(6 x"f(x)dx= )(6 x"g(x)dx

for all 11 EN. f = 9 on [a.b]. D
The condition is equivalent to

)(b P(x)(f _ g}dx = 0

(17.23)

(17.24 )

for any polynomial P. Weierstrass (-17.3b) tells us that there is a sequence of
polynomials Pn uniformly converging to f - 9 on [a, bJ. Hence. the condition implies
J(f - g)'2dx = O. Hence. f = 9 follows.

If the domain is not bounded. then Hausdorff's theorem does not hold. That
is. the knowledge about all the moments do not uniquely specify a distribution
function.

17.3a Bernstein polynomiaL A constructive demonstration of Weier­
strass' theorem is the following in terms of the Bernstein polynomial.
\Ve study a continuous function 1 defined on [0, 1]. Let

(17.25)

This uniformly converges to 1 as n - 00.
This tells us that any continuous function is approximated as a

linear combination of monomials 1. z, x 2• • • -, The set of monomials
is complete in the space of continuous functions (= any continuous
function is in the closure of the totality of the linear combination of
monomials). 234

Exercise.
(1) Demonstrate that for f(t) = 1, t, and t2 B" (t) converges to the respective target

234T he good function principle (-19.16) can be restated as follows: If a relation
among integrals on a finite closed interval is correct for polynomials. then it is
correct for any integrable functions.
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functions uniformly.235
(2) {l.cosnt} is complete on [0.11"] but not so onn [-11",11"]. The same is true for
{sinnt}.

Discussion. Here. a theoretical physicists' formal demonstration of the conver­
gence of (li.25) is given. We first note that the Taylor expansion can be written
asZ36

(li.25) can be rewritten as

f(x +y) =exp (y:X) f(x). (17.26)

(17.27)

(17.28)

Here. we have used the binomial theorem. Now n is extremely large. so the exponent
can be expanded to obtain

En(.r) =: (l_X+X(I+!~+ ...))nf(t)1 • (17.29)
11 dt t=o

= (I+::~+ ...)n!(t)1 . (17.30)
11 dt t=o

- exp (x :t) f(t)lt=o' (17.31)

= fix). (17.32)

Mathemarically. this is not a proof (note that this works only for analytic functions
(-7.1) ): this is just the Euler style 'algebraic formalism' (-4.4 Discussion). but
it is not empty.

17.3b Who was Weierstrass? Karl Theodor Wilhelm Weierstrass
was born on October 31. 1815 at Ostenfelde in Miinsterland. His fam­
ily was rather poor. but a very cultivated one. He was a student cum
laude every year. good at German. Greek, Latin, and Math. His father
wished him to be a politician. so he studied law and economics at the

23SThis demonstrates that En converges uniformly to any continuous target func­
tion thanks to the Bohman-Korovin theorem:
Let L; be a linear operator on C[a.b] (continuous functions on [a, b]) which is moso­
tonic (i.e.. if f ~ g. then Ln! ~ Lng). The following two conditions are equivalent:
(A) Lnf -+ f is uniform for any f E C[a. b].
(B) L n1 -+ J is uniform for J = 1,x and x2

• 0
The theorem is the shortest route to the Weierstrass approximation theorem.

236If the reader knows that the momentum operator is the generator of translation
in quantum mechanics. the formula should be obvious.
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University of Bonn (from Fall of 1834). However. he soon realized that
these were not true scholarly disciplines but only for bread, and began
to feel them as a waste of his life. He studied Laplace' Mechanique
celeste. Jacobi's Fundamenta nova, etc., but he could never patiently
attend mathematics classes except the one by Plucker's geometry.237
He studied only mathematics for four years without taking any exams
in any subject. He also loved taverns and became an expert in fencing
with his great physical strength and agility. Hence, when he returned
home after four years, naturally he was treated very coldly.

Since he knew he could not go to a good university to learn math­
ematics. he decided to be a teacher. and enrolled in the Theologi­
cal and Philosophical Academy at Munster on May 22, 1839. where
Gudenllann238 was teaching mathematics. Weierstrass quit the Academy
in the same Fall. and prepared for the exam to be a teacher. In the
exam in 1840. he gave a new result on elliptic functions.

He became a teacher of Munster gymnasium in 1841. He wished
to complete his work submitted as a part of the exam. but thought
that he should first clarify the foundation of the theory of general func­
tions. He completed a paper proving Cauchy's theorem without us­
ing double integrals (note that Gauss' letter (-8A.4 Discussion (A))
was not known until 1880). The paper also contained Laurent's theo­
rem (8A.8). In 1842. he completed a fundamental paper on analytic
functions. There he introduced the idea of function elements (-7.7).
analytic continuation (-7.8). singularities (-8A). natural boundary
(-7.11). etc.Z39 In the Fall of 1842. he moved to the Royal Catholic
Gymnasium at Deutsch-Krone (West Prussia). He had to teach callig­
raphy. geography. and gymnastics. He published his first paper 011 the
gamma function (-9. the infinite product formula) in the proceedings
of the gymnasium. Of course. no one read it who could understand
it. For the next six years. he stayed in the position without becoming
desperate.

In 1848fall. he was promoted to a teacher of an Obere-Gymnasium
(high school) at Braunsberg on the Baltic. Fortunately. the principal.

23iPliicker was a professor of physics concentrating on analytical geometry. How­
ever. it was said that a non-physicist occupying a physics position was inappropriate,
so after 1846 for about twenty years he concentrated on physics, However. he could
not stop studying mathematics. so that he decided to return to math, and started
to construct a new geometry (introducing the Plucker coordinate), but could not
finish it.

:mC. Gudermann (li98-I85l). He stressed the importance of power series. and
this gave a profound influence on 'Veierstrass. who always appreciated Gudermann
in every possible opportunity (e.g.. on his (=I\:\Y) seventieth and eightieth birth­
days). Weierstrass never attended any class but Gudermann's. There were 13
students in the first class. but in the second class Weierstrass was the only student.

239The paper was not published for a few tens of years.
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Mr F. Schurz, understood him. His research was at the second stage of
completing the theory of elliptic functions. His work on Abel functions
appeared in Crelle's journal24o in 1854. It was a sensational paper,
making him famous instantly. University of Konigsberg decided to give
him Doctor honoris causa, and they (including math Professor Richelot
who proposed this) went to Braunsberg to hand the doctorate.241

In 1856, he became a professor of Geverbe-Institute in Berlin from
July L and then from the Fall, thanks to the recommendation of Kum­
mer. he was also an associate professor of the University of Berlin.
Kronecker was also there. However, he had to give lectures 12 hours a
week at the Institute, and also had to give a lecture on Gauss' theory
on the dispersion of light. so he did not have enough time to do re­
search. He and Kummer founded the first seminar in Germany devoted
exclusively to pure mathematics in 1861. After 1862 he could lecture
only while seated in a chair because of brain spasms and the onset of
recurrent attacks of bronchitis and phlebitis. During his classes an ad­
vanced student assisted him by writing on the blackboard.

He became a full professor in 1864, and was already very well
known all over the world (even in the US).242 By the 1870s as many
as 250 students attended his classes each year. This enrollment was
exceptionally high for advanced mathematics courses in his time. He
removed the requirement that doctoral dissertations be in Latin.

He tried hard to eliminate use of intuition as much as possible. He
analyzed intuitive concepts and wished to reconstruct everything on
the concept of integers. Also he made effort to find the shortest path
from the very basic.

Sonia Kowalevskaya/v' became his private student from 1870 Fall.
because she had an excellent recommendation from Konigsberger, his
former student. He became the Provost of University of Berlin in 1873,
but he continued to teach her. She received her PhD in 1874 with the
now famous work about PDE (Cauchy-Kowalevskaya theorem).

Kowalevskaya died in 1889; Kronecker died in the same year?~4

UOThis is still the top-ranking mathematics journal.
241 According to Mittag-Leffler, at his 80th birthday, Weierstrass recollected with

tears in his eyes that it was his most delightful event that Professor Richelot came
oyer in person to hand him the degree. 'However, I still regret that the day came
too late for me.' He spent 15 years teaching boys.

242\Yhen Mittag-Leffler went to Paris to learn with Hermite. Hermite said,"You
have made an error. You should have attended courses of Weierstrass in Berlin. He
is our master of all:' (in 1873 just after the Franco-Prussian war).

243 January 15, 1850 Moscow - February 10. 1889 Stockholm.
244Kronecker did not like Weierstrass' theory of irrational numbers. He aimed at

arithmetization of mathematics. saying "Die ganze Zahl schuf der liebe Gott, alles
tbriges is Menschenwerk." Needless to say. Kronecker hated Cantor (-+17.19),
but Weierstrass defended him.
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He retired in 1892. He chose as his successor Frobenius (--+24B). He
died on February 19. 1897 of aggravated influenza.

17.4 Set of trigonometric functions is complete.245 Let f(8)
be a 27r-periodic function. Introduce

tp(x, y) = r f(8), (17.33)

where x = rcose and y = rsine. This agrees with f(8) on the unit
circle 3;2 + y2 = 1. sp can be uniformly approximated by a polynomial
of x and y on [0.1] x [0.1]. Setting r = 1 the resultant formula becomes
a polynomial of cos e and sin 8. However. with the aid of the formulas
of trigonometric functions. this can always be reduced to the form of
the partial sum of Fourier series.

Discussion [Miinz' theorem].
The set of powers {.ro.} with 0i -+ oc is complete (w.r.t. the ordinary sup norm)
on [0.1]. if and only if :L:i(a;)-l diverges. 0 246

From this we realize that {e- o •t } is a complete set on a finite interval [O.s] for any
s > 0 under the same condition. Thus we can approximate correlation functions
c(t) (-+32.13) on any large time interval [0. T] with the linear combination of ex­
ponentially decaying functions. 247

17.5 Three basic facts for piecewise smooth functions. 248 Let
Is be the partial sum of (17.1) up to the n =N terms. We assume f
to be piecewisely smooth. TheI1. there are three basic facts:
(l) limv.... oc h'(x) = [j(x + 0) + f(x - 0)l!2.
(2) On any closed interval [a. b] which is in an open region where f is
Sll100th.249 the convergence is uniform:
lim-, .... oc max.rE!a.bjlf(x) - f.'dx)\ =o.
(3) At an isolated jump discontinuity at xo. Gibbs' phenomenon250 oc­
curs: for sufficiently small 8 > 0:
lim-, ....x[max!J·_.ro f ...·(x) - minl:r-:rol<c h'(x)] = Clf(xo + 0) - f(xo­
0)1. where C is a universal constant given by C = ~ J; si~.r dx '"
1.17897974··· (i.e.. there is about 18% overshooting).

245This smart proof is found in Courant-Hilbert (Chapter 2. Section 5.4).
246H. :'IiillZ. Festschrift H A Schwarz. p303 (1914): The lecturer has not read

the original. This is quoted in Courant-Hilbert Chapter 2, Section 10.6. See P
Borwein and T Erdelyi, "Polynomials and Polynomial Inequalities" (Springer, 1995)
for detailed information about the theorem and the related topics.

24iThis implies that we can approximate any Gaussian process with a linear com­
bination of Gauss-Markov processes.

248 A function which is continuously differentiable except finitely many points (at
most countably many points) is called a piecewise smooth function.

249 that is. f is continuous and piecewise C 1 (the so-called strong Dini condition).
25°Read Korner. Section 17.
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(17.34)

Discussion.
(A) Intuitive understanding of the fundamental theorem of Fourier expansion.
Let f be a periodic function with period 21r. We have

I(t) = -.!.. f 1ll'dsl (s)ein ( t - 8)
21r -ll'n=-oc

Truncate the sum as

N ".
IN(t) =2. L: f dsl(s)e'n(t-s).

211' n:-N -ll'

This can be rewritten as

f:y(t) = f~ dsl(s)~.Y(t - s).

where

(17.35)

(Ii.30)

~'y(z) = .!. si~S'::. (17.37)
IT sin z

This is called the Dirichlet kernel (-14.13 Discussion (D)). Its graph looks like the
ones in the figure below. The Gibbs phenomenon and the average value property
can be seen from the following figures. 251

1

N-19
,-9L/20

1..-----...,1(1:) 1

o

1

L

\
r-10L/ 20

1

.-12L/20

o L o

(17.38)

(B) Dirichlet integral: Let a < 0 < band 1 be piecewise monotonic in [a,b]. Then,

. l b
sin AX 7l"lim j(x)--dx = -2(f( +0) + f( -0)).

A-X a X

251 Ezawa
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Discuss the relation of this to (2) above.

Let 8 n be the partial sum up to the n-th term of its sine Fourier ex­
pansion formula (-17.13). Then. it is not hard to see

17.6 Gibbs phenomenon. The pathology called Gibbs' phenomenon
occurs near the jump. Any jump could be used to check the assertion
in 15.5(3).252 We may use the following sawtooth function

f(x) = x for x E (-1r.7r) and f(±1r) =O.

Sn(7r - 7r/n) - C1r.

where C is given in 17.5(3).

(17.39)

(17.40)

17.7 Dirichlet's sufficient condition for expandability: prac­
tical condition. The basic facts in 17.5 are for piecewise smooth
functions. Much wilder functions can be written as Fourier series. A
sufficient condition for 17.5( 1) is:
! is periodic with at most finite number of extremal points and discon­
tinuities.
This is sufficiently general for practitioners. but an ultimate version is:

17.8 Theorem [Rlemann-Lebesguej.P'' A necessary and sufficient
condition for (17.1) to converge to ! at x is that

~·b6.r)p~

lim [C -2
1

U(x + t) + !(x - t) - 2f(x)]sin.At dt =0
A-X Jo t

(17.41)

for some [, E (0. 7r). If this holds uniformly in [a. b]. then (17.1) uni­
formly converges to f(x) on [a. b].
Corollary [Dini]. If Ij(x + t) + j(x - t) - 2j(x)l/t is integrable as a
function of t on (0. b) for some 6 E (0. 7r). then (17.1) converges to j( x)
at x, In other words. if for any [, > 0

16 f (x + t) - f (x - t) dt
-6 t

exists. then (17.1) converges to ! at x,

(17.42)

17.9 Advanced theorems.
Theorem[Dini]. If f(x) is L 1 (Lebesgue integrable. -19.8), and is

2&2Howeyer. this localization of pathology is only in I-space.
253Se-e Y. Katznelson. An Introduction to Harmonic Analysis (Dover. 19G8), Sec­

tion 5.11-2. p51-55.
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(17.43)

Holder continuoue.P" then its Fourier series converges to f(x) at a:
Theorem[Carlson] (1966). For any Lz-function (square Lebesgue in­
tegrable. ~19.8). there is a convergent subsequence of its Fourier finite
series such that it converges pointwisely to f for almost all (~19.5)

points.

17.10 Remark.
(1) Warning. There exists continuous functions whose Fourier ex­
pansions do not converge at some point [duBois-Reymond].255 Hence.
continuity is not enou h to ensure the convergence, although we know
the Fourier series 0 a continuous function contains all the information
needed to recover the original continuous function if summed according
to Cesaro:256
Fejer'stheorem.P? Let S; be the partial sum of the Fourier series
(17.1) up to the n-th (both sine and cosine) term. Define

1 n

tr; == -- L Sk·
n + 1 k=O

If f is 2f-periodic continuous function. then a; uniformly converges to
f.O
Fejer's theorem can be written as (~14.13 Discussion (D))

( )

22 11" sin n(y-x)

f( x) == lim -1 f (y) 2'~ dy.
n-x 1f -11" SIll 2

(17.44)

Note that the kernel (~14.13 Discussion (D)) of the integral does no
change its sign in contrast to the Dirichlet kernel in Discussion (A) of
17.5. .
(2) There exists L1-functions (i.e.. Lebesgue integrable functions ~19.8)
whose Fourier series diverges everywhere.
(3) For any Lz-function (i.e.. square Lebesgue integrable functions ~19.18),
the set on which its Fourier series diverges is measure zero (~19.3).

This explains partially why Lebesgue integral is the most natural frame­
work to treat Fourier analysis (-+19). See also 17.9.

2S4That is. there are positive numbers a and C such that for any e > 0 there is
fJ > 0 such that

Ix - yl < 6 => If(x) - f(y)1 < elx _ ylC>·

2s5Paui David Gustave du Bois Reymond, 1831-1889.
256 As seen here. even a divergent series can sometimes be used to reconstruct the

original function. "'e will come to another example later in asymptotic expansions
(-+25.18-20).

257Li6t Fejer (1880-1959) proved this sensational theorem when he was 19.
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17.11 Theorem [Riemann-Lebesgue lemma). Let f be integrable
on [a. b]. Then.

lim fb !(x)eimxdx = O. (17.45)
m .....xJa

Here m need not be an integer. 0 258

Of course. this implies that sine and cosine Fourier coefficients also
vanish in the m -+ 00 limit.

Physically. the essence of the lemma is that if the total energy
carried by the wave is finite, then the energy carried by every high
frequency modes must be sufficiently small to avoid any 'ultraviolet
catastrophe.' because the total energy ought to be the sum of the en­
ergy carried by each mode.

17.12 Smoothness and decay rate. If ! is a k-times differentiable
periodic function and t'" is integrable. then

(17.46)

This follows easily from the Riemann-Lebesgue lemma through inte­
gration by parts (cf. 25.11).
(1) This supports our intuition that smoother functions have less high­
frequency components.
(2) If f E ex. then its Fourier coefficients must decay in the n -+ 00

limit faster than any negative power of n.259

A precise statement is as follows:26o

Theorem. Let k E Z. IfL~::::_x Inkg(n)I < 00. then f(x) = L~::::_xg(n)eill.r

is a ek-function.
(3) Theorem [Paley-Wiener]. A necessary and sufficient condition for a
real analytic periodic function f(x) to be analytic on a strip 11m zl < (J

is that for any a E (0. (J) there is a positive constant e (which may
depend on a) such that Ij(n)1 :s ee-allll~ where j(n) is the Fourier
coefficient.

Discussion.
Around a nonsmoorh point the convergence is slow as shown in the figure. 261

2585ee Karzuelson p13.
259This property turns out to be crucial for the definition of the Fourier transforms

of generalized functions (-+32C.6).
260K Tanishlma. Buturisugaku nyumon (Cniv. Tokyo Press. 1994).
261 Ezawa
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o 0.5

Exercise.
(1) Compute the Fourier expansion of xlxl on [-Ti.Ti]. Then. discuss the relation of
your result and the smoothness of the function.
(2) For f(x) = x2Tl+le-alzl. where n is a positive integer and a is a positive con­
st ant. we estimate its k-th Fourier coefflcient e- 1..-(211+3).

17.13 Smoothness examples. If a function f is such that pk) 1S

continuous. but that 1(/<+1) is not. then an "" n -(k+Z): on (-7r. 7r):

2 'X (-1 )11+1
(17.47)x - - L . sinnx.

7r 11=1 n
7r 4 1

Ixl = '2 -:; L (2n-1 cos(2n - l)x. (17.48)

x( 1!"z - x2 )
( _1)11+1

(17.49)- 12L3 sin nx,
n

x2(21!"2 _ x2 )
77r4 (_1)11)

(17.50)- Y + 48L 4 cosnx.o n

17.14 Nontrivial numerical series obtained via Fourier expan­
sion. Fourier expansions could be used to get the following series re­
sults. From Ixl we get

7r2 1 1- 1+-+-+.. · (17.51)
8 32 52

1!"2 1 1
= 1+-+-+ .. · (17.52)

6 22 32

1!"2 1 1
(17.53)- 1--+-- .. ·.

12 22 32
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From x3 we get. for example.

7r3 1 1
12 =1 - 33 + 53 - .... (17.54)

17.15 Importance of smoothness. We wish to use Fourier expan­
sions to solve PDE. Therefore, the convergence property of the series is
very important. We should be able to differentiate the series termwisely.
For this to be allowed a sufficient condition is the uniform convergence
of the termwisely differentiated series. Hence, we wish to have the
Fourier coefficients to decay as fast as possible (see the next entry).
The previous entry explains why we must pay careful attention to the
smoothness of periodic extension (-17.2) of a function defined on an
interval.

17.16 Sine and cosine Fourier expansion. If f is defined only
on [0. f]. then f is extended periodically as a function of period P. to use
Fourier expansion formulas (-17.2). It is often convenient to extend f
as an even or odd function of period 2i (or longer -17.17). When we
extend the function. it is advantageous to make the extended function
as smooth as possible to ensure the good converging property of the
series as discussed above.
(1) If f(O) = O. then f defined on [0. £] should be sine-Fourier expanded
as

where

ec n7rX
f(x) = I: i; sin -e- for x E [o.e].

11=1

(17.55 )

2 r . n7rX
bn = "j 1

0
f(x) sm-e-dx. (17.56)

(2) If ! ::j: O. then! defined on [O . .e] can be cosine-Fourier expanded as

aD oc tvs«
f(x) = - + L an COS -.e- for x E [0.f],

2 11=1
(17.57)

where
2 t' tin»

an ="j 10 !(x)cos-e-dx. (17.58)

[In the latter case we can subtract f(O) from! to apply the sine-Fourier
expansion. too.]

Exercise.
Expand the following functions on [0.11'] in Fourier cosine series:
(1)

J(x) = cosax
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(2)

where b E (0,11").

I(x} =8(b - z}. (17.60)

17.17 More sophisticated extension, To pursue the smoothness
of the function to be expanded, for example, we can use the following
trick to extend the original function on [0, e] into a periodic function of
period 4£:
The following set could be used to expand any function on (0, f.)

The formulas are

with

{
, (2n - 1)?rx }

sin 2f. .

oc • (2n-1)?rx
I (x) = 2: an S111 2£ . ,

n=l

(17.61)

(17.62)

2 r , (2n - l)?rx
an = f l« dx I(x) S111 2f' (17.63)

This expansion is particularly useful when 1(0) = 0 and I'(f) = 0
Analogously. we could use the cosine counterpart.

17.18 Impact of Fourier, The impact of Fourier's general asser­
tion was not confined within applied mathematics. As we see below, it
almost dictated Modern Mathematics.
(1) Function concept had to be clarified. Fourier claimed that any
function can be expanded into Fourier series (-t1.6. 1.7). In those days
the idea of function was 110t very clear. For example, there was a dis­
pute between d'Alembert (-t2B.7) and Euler (-t4.4): Euler thought
every hand-drawable function is a respectable function, but d'Alembert
thought only analytically expressible functions are respectable. There­
fore. to make sense out of Fourier's claim, the concept of function had
to be clarified. Eventually, the modern concept of function as a map
culminated through the work of Cauchy (-t6.11) and Dirichlet: if a
value I(x} is uniquely specified for a given value of the independent
variable x. then I is a respectable function. Then, inevitably, many
strange functions began to be found (see. e.g, 2A.l Discussion (B)).
Now. we know many examples such as fractal curves. 262 Nowhere con­
tinuous functions were also found. A famous example is the Dirichlet
function: D(x) = 1 if x is rational. and 0 otherwise (-t19.1).

262B. B. ~landelbrot. The Fractal Geometry of Nature (Freeman. 1985).
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(2) Convergence condition. The convergence condition of infinite
series had to be considered. This spurred Cauchy to construct his the­
ory of convergence (-6.11).
(3) Concept of integration had to be sharpened. Fourier pro­
posed an integral formula for the Fourier coefficients as summarized in
17.1. However ~ if a function f is not continuous, then it was not clear
how to interpret the integral. To clarify this point. Riemann invented
the concept of Riemann integration with clear integrability condition
(in 1853 -7.15).
(4) Set theory became necessary. Cantor (-17.19) found that
even if the values of the function at infinitely many points were un­
known. still the Fourier series was determined uniquely. He studied very
carefully how large 'sets' of points could be removed without affecting
the Fourier coefficients. Soon he had to characterize these collections
of points. The first surprise he found was that infinity of the totality of
real numbers and that of rational numbers are distinct.263 To organize
his theory of infinity. Cantor attempted to introduce the concept of
'set: However. many antinomies ('paradoxes') were found.264

(5) Securing foundation required axiomatic set theory. Even­
tually. to secure the foundation of set theory a set ofaxioms265 were
introduced by Zermelo.266 Hence. the currently most popular axiomatic
system of mathematics is under almost the direct impact of Fourier's
idea.
(6) Further sharpening of integration concept was required.
According to Cantor the area of D( x) for x E [0. 1] must be zero
(-19.2). but we cannot make any sense out of the Riemann integral
of the Dirichlet function D (-19.1). A more powerful integral was
needed. which was eventually provided by Lebesgue as the Lebesgue
integration (-19.8).

263Cantor's first important result (December. 18i3). -+19.3.
26~Perhaps the most famous antinomy is the Russel paradox (1902). The Russel

paradox is as follows. 'Sets' can be classified into two classes: 'sets' which contain
themselves as their elements (x EX) and 'sets' which do not contain themselves
(x ~ x). Make the 'set' Z of all the 'sets' x such that x 't z: Z ..... {x: x 't z]. Is Z
in Z or not? If Z ~ Z. then Z E Z. but if Z e Z. then Z 't Z, a paradox.

265):::\. Moschovakis. Notes on Set Theory (Springer. 1994) and J. Winfried and M
Weese. Discovering Modern Set Theory I. the basics (AMS. 1996) are recommended.
P. Maddy, Realism in Mathematics (Oxford, 1990) may be used to understand the
background of axiomatic set theories.

266Ernst Friedrichs Ferdinand Zermelo. 18i1-1953. For physicists. Zermelo is fa­
mous for his discussion against Boltzmann: the 'Riickkehreinwand.' He was an
assistant of Planck in those days and was against atomism (as his boss was). See
G. H. Moore, Zermelo's Axiom of Choice. its origins. development. and influence
(Springer. 1982). Perhaps this is more entertaining than many novels.

259



Discussion.
The reader must know and be able to explain to her lay friend the argument showing
that Q is countable, but [0,1] is not. Also she must be able to explain why [o.l]n for
any n e N has the same density as [0,1] (i.e., there is a one-to-one correspondence

between any dimensional cube and the interval [O,lJ.

17.19 Who was Cantor? Georg Ferdinand Cantor was born in 1845
into a cosmopolitan merchant family in St. Petersburg. He was an
artistically inclined child (a dessin is reproduced in his biography by
Dauben26i ) . He got his university education at Berlin (from 1863)
from Weierstrass (.....17.3b). Kummer, Kronecker and others. His the­
sis solved a problem left unsettled by Gauss.

After briefly teaching at a Berlin's girls' school. he got his per­
manent ~ob at Halle in 1869, where he became a junior colleague of
Heine.26 who urged Cantor to study the question about the unique­
ness of the Fourier coefficients. Cantor quickly found what is outlined
in (4) of 17.18. In 1891. Cantor invented an entirely different proof
of uncount ability of reals, the so-called diagonal method (or method of
diagonalization). This allowed him to make an ascending hierarchy of
transfinite (=infinite) numbers. Cantor accepted the concept of actual
infinity through his study of Plato. Aquinas. Spinoza and Leibniz. This
put him at odds with a tradition stretching from Aristotle to Gauss that
accepted only potential infinity. Most of his first papers were published
in Acta Mathematica published by Mittag-Leffler.

To organize his theory of transfinite numbers, Cantor attempted
to introduce the concept of 'set.' By a "set" he meant any collection
M of definite. distinct objects m (called elements of M) which we can
perceive or think. Cantor published his famous Beitdige269 part I in
1895. This was the birth of set theory.

Cantor wished to move to a position more prestigious than Halle,
but Kronecker hated his theory of transfinite numbers and opposed
his appointment at Berlin. Mental illness afflicted his final decades
of his life. Beginning in 1884 he suffered sporadically from depres­
sion. Although his studies in other fields than mathematics may look
strange (to try to prove that Bacon wrote Shakespeare's plays, Free­
masonry. etc), he continued to work actively in mathematics. In 1890

26; J. W. Dauben, Georg Cantor. His Mathematics and Philosophy of the Infinite
(Princeton UP, 1979) is a very informative and enjoyable book.

268 Heinrich Eduard Heine, 1821-1881. well known for his covering theorem (Heine­
Borel).

269 w hich means 'contributions: "Beitrage zur Begrundung der transfmiten Men­
genlehre" Math, Ann. 46. 481 (1895). A Dover translation is available: Contribu­
tion to the founding of the theory of transfinite numbers (Dover, 1955; the original
translation by P E B Jourdain in 1915).
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he founded the Association of German Mathematicians. He advocated
international congress of mathematicians and made arrangements for
the first of these held in Zurich in 1897. He died in January 1918 at
the University of Halle mental hospital.
Cantor showed a unique ability in the art of asking questions that
opened vast new areas of mathematical inquiry, an ability that he con­
sidered more valuable than solving questions.
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