
16 Green's Function for PDE - Elemen­
tary Approach

Green's idea is illustrated with simple (but representative)
examples, We first construct free space Green's functions,
With the aid of the image source method, we construct
Green's functions for simple domains as well. Dirichlet
boundary value problems for the Laplacian are discussed
toward the end,

Key words: free space Green's function. method of de­
scent. method of images, reflection principle. image source,
conformal map, Green's theorem

Summary:
(1) Free space Green's functions can be constructed as spherically sym­
metric solutions (16A,2-4. 16B.4. 16C.1).
(2) Inhomogeneous equations can be solved with the aid of Green's
functions (16A.21. 16D.9).
(3) Green' s functions for simple domains may be constructed with the
aid of the method of images (16A. 7-17. 16B.9, 16C.5).
(4) In 2·space. conformal maps can be fully exploited to construct
Green's function for the Laplace equation. Neumann problems can
be reduced to Dirichlet problems (-16D.2). and the latter can be
mapped 011 a Dirichlet problem on the unit disk (160.3. 160.11.
160.12). Look up 'stylebooks' of conformal maps.

16.A Green's Function for Laplace Equation

16A.l Free space Green's function for Laplace equation. We
have already seen (-14.20) that in 3-space

-l:l.G(rely) = c(re - y) (16.1)

(16.2)
1

G(reIY) = 4 I I'7rre-y

This is a fundamental solution (-14.2) of the Laplace equation, and is
the Coulomb potential created by a .unit . charge located at y. We can

where
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say the Coulomb potential is the Green's function for the Laplace equa­
tion with the condition that the solution vanishes at infinity (-+14.23(4)).

16A.2 Spherical symmetric solution of Laplace equation. Sup­
pose f(r) is spherically symmetric, where r == Izl. Then. in d-space
(see Remark below)

(16.3)

(16.4)

If we assume that the solution vanishes at infinity, for d > 2 a spherical
symmetric solution to ~f = 0 is given by

1
f oc r d- 2 '

The solution is singular at the origin. and we can show ~f(r) oc 8(z)
(-+16A.3. cf. 14.20).
Remark. There are two ways to obtain (16.3). One is to use the d-space version
of 2D.10. Let qj = r and the remaining angular coordinates to be q2.···. qa. Then
(....2D.3) h j =1 and the other h/s are all proportional to r . It is easy to generalize
2D.7 and 2D.9 to d-space. so the Laplacian can be written as

(16.5 )

If this is applied to a function of r only. then we have only to pay attention to the
j =1 term. Since we need not worry about the angular coordinates. what matters
is the fact that h1 ••• ha oc rd - 1 • \Ye obtain (16.3).

A cleverer method. is to apply

to f(r). The chain rule gin's us

a I ar ,x;-a f(r) = f (r)-a = f (r)-.
X; x; r

(16.6)

(16.7)

Here. arlax; =x;jr is used. which can be best obtained from rdr = ::t. d::t. Differ­
entiate this again. and we get the desired formula.

Exercise.
Let D be the unit ball centered at the origin in as. Suppose

~u =1

inside the ball. and u =1 on aD.
(1) Show that if there is a solution. it is unique.
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(2) Find a spherically symmetric solution.

16A.3 Demonstration of !::i(I/rd- 2) ex 6(z). To demonstrate this,
we go to the basic: let cp be a test function (--+14.8)

(!::if. cp) = J(_1_~rd-I~r2-d) cp(z)rd-Idrdw, (16.9)
r d- I ar ar

- Sd-I J(~rd-I ~r2-d) cp(r)dr. (16.10)

Here dw is the solid angle element in d-space (i.e., the area element
of the unit (d -I)-sphere). Sd-I is the area (volume) of (d - l l-unit
sphere. and the overline denotes the angular average just as in 14.20.
Continuing the calculation. we get

J d-I (d ?-d) d] -(!::if. cp) = -Sd-I r dr r- dr dr = (2 - d)Sd-d(O). (16.11)

Since ](0) = f( 0). we have demonstrated

- !::ir2-d = (d - 2)Sd-IO(X). (16.12)

(16.13)

(16.14)

(16.15)

16A.4 Coulomb potential in d-space. This tells us the general form
of the free space Green's function of the d-Laplace equation:

1
G(xIY) = (d _ 2)Sd-Il x _ yld-2'

This is the d-Coulomb potential. Here the area of (d - 1)-sphere (the
.skin' of d-ball) is given by

21rd/ 2

Sd-l = r(d/2)'

which is obtained from the volume V( r) ofthe d-ball of radius r (--+9.10
Exercise (B)) as

S _ dv(r)1
d-I - dr .

r=l

(16.13) for d = 3 is. of course. in agreement with the 3-space result.
For d = 2. if we ignore 'infinite' constants. taking the d --+ 2 limit

in the formula. we arrive at the correct formula for 2-space:

1
G(xly) =--In Iz - yl·

21r
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Obtain this formula directly.

Exercise.
Express the 2-space Green's function (16.16) in the polar coordinates. Then (--+16D.l0),
show

G( I) 1 I 2:00

cosm(¢z - ¢I/) (T<) ma: y = -- OgT> + - ,
2~ m T>

m=l

(16.17)

where 0., (resp .. 4>1/) is the polar coordinate of a: (resp., y), and T> == max{Ia:I, Iyl}.
and T< == min{Ia:I.lyl}. An ananolgous formula for 3-space can be obtained in
terms of spherical harmonics as seen in 26A.14.

16A.S Method of descent. In d-space, if we assume that the system
is translationally symmetric along one coordinate direction, then the
cross-section of this solution perpendicular to this direction should be
indistinguishable from the (d - 1l-space result. That is. averaging over
one direction of d-space results gives (d - 1j-space results. This method
to obtain lower dimensional results is called the method of descent.

If we integrate the d-Coulomb potential (16.13) over Xd. then we
should get the (d - 1)-Coulomb potential. because JdXdbd(x - y) =
Od-l (x' - y'). where x' is x with its Xd-component suppressed. The best
way to demonstrate this is to use the exponentiation trick explained in
9.10 and to integrate over Xd:

(16.20)

.Ji roc dt t(d-Sl/2-1e-a2t
r«d - 2)/2) Jo

= .Ji (d-3) 1
r(d - 2)/2)r -2- ad-S'

l~x dXd (a2 + X~Yd-2)/2 = t": dt j+X dx 1 t(d-2)/2-1e-(a2+z~)1
~ Jo -oc dr«d - 2)/2) .

(16.18)

(16.19)

where a2 = xi + ... + xLI' With the aid of this and the fundamental
functional relation 9.2 of the Gamma function, we eventually obtain
the (d - 1)-Coulomb potential. This is a good exercise.

16A.6 Green's function in (semi)bounded space. If the domain
of the equation is (semi)bounded. then to satisfy the boundary con­
ditions is nontrivial in general. However. if the domain enjoys nice
symmetries. there is a clever way method of image sources. Basically.
we tessellate the space by the copy of the domain with appropriate sign
change of the source terms (called image sources).

16A.7 Method of images I. Half space. The Green's function
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G(z, y. Z [z'. y'. z') for 3-Laplace equation is the electrostatic potential
at (x. y. z) due to a point charge at (z', V'. z') with a suitable potential
values specified on the boundary of the region. The Green's function
for the Laplace equation on the x > 0 half space with a (homogeneous)
Dirichlet boundary condition is given by

GD(X.y.Z:X'.y':z') _ ..!- [ 1
411" y(x - x')2 + (y - yl)2 + (z - z'F

1 ]P6.21)
y(x + x')2 + (y - y')2 + (z - z'}2

Here the source term is at (x'. V'. z"). and its image source is at (-x', y', z').
To maintain the zero potential condition at x = O. the effects of the
both sources must cancel exactly on the yz-plane. Hence, the image
source must be -1.
If the boundary condition is the homogeneous Neumann condition at
x = O. then to kill the gradient on the yz-plane. the image charge
must be +1. Hence. the Neumann function (= Green's function with a
Neumann condition) for semiinfinite space reads

GS(X.y.Z:X'.y'.Z') = ..!- [ ~
411" y(x - x')2 + (y - y')2 + (z - zl)2

+ 1 ] ~16.22)
y(x + x')2 + (y - y')2 + (z - z')2

;.~ ~
:r

<Ii ~ 0.,!~

j
• "t-e ~

v
"-
\,.

d

16A.8 Method of images II. More complicated cases. As we
have seen the locations of image sources and their signs are what we
need. Several examples are illustrated. P j)

•

•

-t •

o

•

0_

e

•

o

•

j)

o

Warning. If the region under consideration is bounded (Le.. enclosed

223



in a finite sphere whose center is located at the origin), then the Neu­
mann condition Green's function ( Neumann's function) for the Laplace
equation requires an extra care (-+1.19(3)), so we will NOT discuss
this case here. See 36.7 and 37.9.

Exercise.
(1) Find the Green's function for the Laplace equation on the infinite strip (-00, +oc)x
[0. Jr] with a homogeneous Dirichlet condition. [The reader must impose a further
condition to single out the solution (-1.19 Discussion (2).
(2) Find the Green's function for the Laplace equation on the half 3-space defined
by x » a. where a is a constant.
(3) Find the electric potential in 3-space with x =0 and y =0 maintained at zero
potential and the charge Q placed at (XI.y'.D).

16A.9 Harmonicity and symmetry. Green's functions for the Laplace
equation are harmonic (-+2C.l1) except at their singularities. If we
study the method of images. the keys are
(1) harmonicity is preserved by reflection,
(2) charges are mirrored onto charges.
Hence. the essence of the method of images is that there are special
symmetry operations preserving harmonicity.

is a harmonic function 011 the whole D. 0
[Demo] Inside D- 9 is obviously harmonic. Therefore, we have only to take care
of 9 near the boundary between D+ and D-. This is easy to show if we use the
converse of the mean-value theorem 29.4.

16A.I0 Reflection principle. Let D be a region such that if (Xl. X2 • • • . • Xd-l' Xd) E
D . then (XI.X2.··· .Xd-I' -Xd) E D. Write D+ for the subset of D for
Xd > 0 and D- = D \ D+. If u is harmonic (-+2C.ll) on D+ and
u = 0 for Xd = 0 (that is. on the boundary between D+ and D-). then
the function 9 defined as

g(XI···· Xd-I, Xd) - U(XI ... • Xd-l, Xd) on D+
-'U(Xl···· Xd-l, -Xd) on D-

(16.23)
(16.24)

16A.l1 Conformal mapping. A conformal transform (Kelvin trans­
form) uof a function U is given in d-space by

(16.25)

where a is a constant. This is the composition of translation z -+ z - a
and inversion z -+ z/lzI2. Notice that this transformation makes the
universe 'inside out: big scales become small and vice versa, and keeps
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the unit sphere centered at a intact. 223 That is, the Kelvin transfor­
mation makes the universe inside out.

16A.12 Harmonicity is conformal invariant. Let b C R d
\ {a}

and D = {x Ix = (y - a)/Iy - al2 , y E b}. If 11, is harmonic on D,
then ugiven by (16.25) is again harmonic on b . 0
Note that the Kelvin transformation transforms a harmonic function
on a ball centered at a to a harmonic function defined on the domain
outside the ball. Remember that a half space can be interpreted as a
sphere with an infinite radius. For 2-space see 16D.

16A.13 Demonstration of conformal invariance of harmonic­
ity. To show 16A.12 we have only to demonstrate ~u(x) =0 honestly.
However. a clever organization of calculation is desirable. We may set
a = 0 without any loss of generality. First. notice that

(16.26)

(16.27)

and

O:i 11 C:12) = Uj C~2) C~I' -2~~~;) .
where 'ltj =au/aXj' We have only to show the formula for x :f:. O. Note
that a?!x!2-d = O. The rest is left for the reader.

16A.14 Method of images III General case. The conformal in­
variance 16A.12 and the reflection principle 16A.II provide a special
method to solve Poisson's equation; actually, we have already used the
reflection principle repeatedly (-16A.7. 16A.S). It is often easier to
solve a problem without boundary conditions at finite distance. Use
16A.II and 16A.12 to extend the domain with boundary conditions
to the whole space. An important point is that a singularity is confor­
mally mapped to a singularity. That is. the images of charges must be
charges (image charge).

16A.15 Sphere, Dirichlet condition. Physically this is the problem
of finding electric potential in the sphere surrounded by a grounded
conducting sphere. A charge of q is at [r, O. 0) (a > r > 0, that is,
inside the sphere) and a grounded sphere of radius a is centered at the
origin. We use the conformal invariance of harmonicity (-16A.12).

223Actually. the definition of conformal maps should be more general, but if 11 is not
even. then the combination of the Kelvin transformation and affine transformations
exhaust the conformal transformation. For 2-space see 16D.
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Consider the conformal map which makes the sphere inside out:

r -+ a2rjr2• (16.28)

The image of (r,O,O) due to this map is at (a2jr,O,O). Therefore the
mapped field must have a singularity at this point. This means that
there is a charge (image charge) q there. This is determined by the
fact that at (a. O. 0) the field must be zero:

ckl',t q + .s: = O. (16.29)
a2jr - a a - r

That is. q' = -aq/r. Thus. we have, inside the sphere

¢ = 4;'0 (v(X - '1,1+ 11' + z' - rv(x _a/,~' + y' + z,) . (16.30)

From this the Green's function for the sphere under the Dirichlet con­
dition is obtained.

Exercise.
Construct the Green's function for a disk with a Dirichlet condition. Then. com­
pare the result with the one obtained with the aid of conformal maps (-16D.6.
16D.ll).

16A.16 Charge outside conducting sphere, not grounded. Sup­
pose the charge is outside the sphere. In this case the net charge in­
duced on the sphere must be zero due to charge conservation. If we
put q' given in 16A.15 at a2 jr and _q' at the origin. all the boundary
conditions are satisfied (See also Jackson. Section 2.6).

16A.17 Method of images for dielectric materials. Method of im­
ages can be generalized to the cases with dielectric materials. but only
for the cases with plane surfaces (not applicable to dielectric spheres).
See Jackson.

16A.18 How to use Green's function (homogeneous Laplace
case). If the boundary condition is homogeneous. then linear inhomo­
geneous PDE can be solved in terms of its Green's function as outlined
in 1.8. A typical problem is to solve Poisson's equation under homo­
geneous boundary condition

which is solved as

- f:l'l/J = f(z).

1/'(x) = Iv dyG(xIY)f(Y)·
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(16.33)

where D is the domain of the problem.

16A.19 Green's formula. Let D C R d be a bounded region, and
u and v be C2-functions defined on the closure of D. Then,

r (v~u + gradu· gradv)dT = r v gradu· dS,lD laD
and

r(v~u - U~V)dT = { (v gradu - u grad v) . dS.
JD JaD (16.34)

[Demo] (16.33) follows immediately from dirt u grad r ) = qrad v- grad t'+ 'IJ~t·. and
Gauss' theorem (....... 2C.13). The second formula (16.34) is obvious from (16.33).

Exercise.
Let D C R d be a region on which u is harmonic. Show

{ qrcd u . dS =O.JaD
(16.35 )

16A.20 Symmetry of Green's function. (See 36.4 and 35.2 also)
Let G(xIY) be the Green's function on the domain D with the homo­
geneous Dirichlet condition. Then.

G(xIY) = G(ylx). (16.36 )

To demonstrate this set u =G(zlx) and v =G(zIY) in Green's formula
(the integration is over

16A.21 Solution to Dirichlet problem in terms of Green's func­
tion. (See the warning in 16A.8.) The solution to the following Dirich­
let problem on an open region D

- ~u =;.p. UlaD = f·

where 'P and f are integrable functions, is given by

tl,(X) = { G(xIY)'P(y)dy - r f(y)8n(y)G(xly)da(y).JD laD

(16.37)

(16.38)

Here 871 ( y ) is the outward normal derivative at y. T is the volume ele­
ment. and (J is the surface volume element.

The formula easily follows from Green's formula in 16A.19 with
u being the solution and v b:ing the. Green's function f<;>r the problem.
In this way with the Green s functions we can solve inhomogeneous
boundary condition problems.
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(16.39)

Discussion.
(A) The second term in (16.38) is understood as the electric potential made by an
electrical double layer.
(B) The surface integral in (16.38) can be written in the following remarkableform

...!... ( dwf(y).
21l' Jan

where ;. is the solid angle of the surface element (at y) seen from x.:124

(C) Derive the following Kirchhoff's formula: For xED
t

u(x) = { Go(xly)y(y)dy - ( d(j(Y) [u(y)8 n(II)G(xly) - 8n(lI)u(y)Go(xIY)] •JD JaD
(16.40)

where Go is the free space Green's function given in 16A.4. This formula is mean­
ingful even when l' is outside D. Show that this is zero if x t;J. D. Because the first
term in the formula is smooth, the discontinuity comes from the surface integral.
The formula cannot be used to obtain the solution because we usually do not know
u and .ts derivative on the surface simultaneously. Recall that the Cauchy prob­
lem of the Laplace equation is generally not well posed (-+28.3 for well-posedness},

16A.22 Green's function for more general domain. We will
discuss this in 36 and 37.

16.B Green's Function for Diffusion Equation

l6B.l Fundamental solution of diffusion equation. A fundamen­
tal solution (-14.2) of a diffusion equation is a solution to

a~)
fit - Db.'I/J =8(t - s)8(:c - y).

It is easy to check by explicit calculation that in d-space

(
1 ) d/2 (IX _ yI 2

)
G(x.tIY·s)= 41rD(t-s) exp -4D(t-s)

(16.41 )

(16.42)

is a solution. Hence, this is a fundamental solution of a diffusion equa­
tion (-16B.4). This is also the Green's function (-14.2) for the

224B130.
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diffusion equation (16.41) under the condition that the solution van­
ishes at infinity. This is often called the diffusion kernel. We can
demonstrate (cf. 14.13) that

w-lim G(x, t Iy, s) = 8(x - y).
t ..... s

(16.43)

(16.44)

Discussion.
(1) It is important to use the formal solution, or the integral equation form of PDE
in terms of the Green's function. because it allows us to apply various approximation
methods (-D16B.I0). The formal solution of

8u
8t = Dj.u + f(x. t)u

with an appropriate homogeneous boundary condition can be written as

u(.r. t) =JdyG(:r. tly· O)uo(Y) + it dsJdyG(:r. tly· s)u(y. s)f(y. s), (16.45)

where Uo is the initial conditon. and G is the Green's function.
(2) Find t he partial differential equation governing u satisfying the following integral
equation

l/(:r.t) = Jdye-·4tG(:r.tly·Olf(y) -it ds Jdye- A1t-s)G(:r.tly·s){u(y,s)}3,

(16.46)
where G is given by (16.38). and f is a continuous function on the whole space. A
is a constant. and the spatial integration range is the whole 3-space.

16B.2 Scaling invariant solution of diffusion equation. Look­
ing at the diffusion equation. we realize that the equation is invariant
under the scaling transformation (z , t) - (AX. A2t ).225 If we demand
that the solution keeps its total mass after scaling (we know the diffu­
sion equation conserves the total mass -alB.2)

J7jJ(x )dx = 1.

then. we conclude in d-space

(16.47)

(16.48)

16B.3 Dimensional analysis. Another way to obtain the scale invari­
ant solution is to perform dimensional analysis. Dimensional analysis is
a way to find combinations of variables that are invariant under change

n"This is actually the idea of dimensional analysis. See the next entry.
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of units (i.e .. change of scales). The dimension of a quantity Q is often
denoted by [Q1' Let the dimension of length be L: [x] = L, and that
of time be T: t] = T. Then [D} = L2IT. Also from Jdx u == 1, we get
[u] == L-d. We can construct two dimensionless quantities (i.e., scale
invariant quantities):

Therefore. u(Dt)d/2 must be a function of z/.J]5i:

u(z. t) =(Dt)-d/2 !(z/J'l5i).

(16.49)

(16.50)

16B.4 Scaling invariant spherically symmetric solution to dif­
fusion equation. If we assume that the solution is spherically sym­
metric around x == O. then f in 16B.3 depends on r =Ixl. That is,
there is a function h such that

(16.51)

Putting this into the diffusion equation. we get an ODE for h as a
function of x = r/.J]5i:

h" (d-1 x)hf dh 0+ -x- + '2 + 2 == . (16.52 )

Since the solution must be smooth at the origin. actually h must be
a well-behaved function of x 2: h(x) == 9(x 2 ) . 9 obeys the following
equation:

d , 2 d ,
2(9 + 49 ) + x dx (9 + 49) == O. (16.53)

If we demand the boundedness of the solution. 9 + 49' = 0 is the only
choice. That is.

1/;(x, t) = t_~/2e-:r2/4D1 (16.54)

C is a constant determined by the normalization condition. We see
(16.42) is obtained after shifting the source position ill space time with
the aid of the translational symmetry of the equation.

16B.5 Initial trick for diffusion equation. Consider the following
initial-boundary value problem for the diffusion equation on a region
D:

(16.55)
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This problem can be converted to

OW
&t = DAt/! + 8(t)'l/Jo. 'I/J = 0 for t ~ O~ "pIeD = <po (16.56)

That is. the inhomogeneous initial condition is always converted to the
source term (-alA.7) of the equation. This can be demonstrated by
integrating the both sides of the equation (16.56) from t = -f to t = +f

(cf. 15.2). where f > 0 is taken to be 0 after integration with the as­
sumption of the smoothness of the solution.

Exercise.
(A) Consider a uniform rod of length I with the thermal diffusion constant D (placed
along the x axis as [0.1]). The rod is thermally insulated except at the ends. The
end temperatures are specified as

T(O. t) =g(t). T(l.t) = h(t)

for t > 0.22
(1 and the initial condition is

T(.r.O) = j{.'!:).

(16.57)

(16.58)

Here f. 9 and h are assumed to be Cl for simplicity (d. a trick in 14B.5).
(B) Consider a uniform rod of length 1 as above, but now the rod is not insulated.
Heat is lost according to Xewton's radiation law (-Dl.18) with the ambient tem­
perature To. The end at .r = 0 is maintained at the temperature .4.. and the other
end is insulated. Let the initial temperature be uniform and .4.. The equation has
the following form

et a'2T
7ii = D a.r2 - c(T - To). (16.59)

The standard trick to solve this is to introduce the new dependent variable T =
f-CI(T - To).

16B.6 Method of descent. Analogously to 16A.5 we can obtain
(d - 1l-space Green's function from the d-space version. In the present
case. this demonstration is easy with the aid of the Gaussian integral
(-19.19).

16B.7 Markovian property of diffusion kernel. The diffusion ker­
nel (16.42) enjoys the following remarkable property called the Marko­
vian property:

G(x. tiY. s) =JdzG(x. tlz. s')G(z. s'ly· s) (16.60)

for any 8 ' E (s. t). Notice that there is NO integration over the interme­
diate time S'. This can be demonstrated by direct integration. This can

226These conditions are compatible with any initial condition so long as t = 0 is
excluded.
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be more elegantly shown with the aid of Fourier and Laplace transform
as we will see later (-38.10). This is the key to the Feynman-Kac
path integral formula (~38.11-13).

16B.8 Random walk and heat kernel. Consider a walker whose
n- th step is a vector all' After N-steps, the position ofthe walker start­
ing from the origin is R = E:;=l all' Each step vector is ej or -ej with
equal probability 1/2d, where e, is the s-th the unit vector parallel to
the z-th coordinate. The trajectory of the walker is a stochastic process
called the random walk (on the simple cubic lattice, in this case). Let
us compute the distribution function of the end position Rafter N
steps. The density distribution is given by

(16.61 )

where ( ) is the average over all the possible choices of all the steps.
The best way to compute this average is to use its Fourier transform
(-32C.8). or the generating function of R:

- (exp [ik . ad)x . (16.63)

Here the fact that all the steps obey the identical probability law has
been used. From now on a physicist's approach is used.227 We are
interested in the large scale distribution. so we have only to study the
above integral for small k only. We can approximate as

(16.64)

Inverting this Fourier transform. we get

(16.65)

This is essentially the heat kernel. This implies that the diffusion equa­
tion describes the average behavior of the random walk. or the behavior
of the ensemble of random walkers.

The Markovian property 16B.7 can be interpreted as the sum of

22iFor a more respectable approach. see \\' Feller. Introduction to Probability The­
ory and Its Applications (Academic Press). for example.
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all the gate probabilities as shown in the figure.

l'rno/ Z1SviArU
~

li:

'" SOVlrc.e

Jn
\
I

)

I~""~ X
so",,..uz

aT =K\,2T.
at

At time t =0 he assumed that the Earth was at its melting temperature which was
To = 3000K above the surface temperature for Irl < R. Its surface temperature

Exercise.
(A) Find the solution of the diffusion equation on [0.1] with a homogeneous Dirich­
let condition at .r = 0 and a homogeneous Xeumsnn condition at x = 1 with a unit
impulsive source placed at x =Xo at time t =O.
(B) Diffusion equation to defend God? Kelvin accepted organic evolution ad­
vocated by Darwin. but he could not swallow the logical consequence of Darwinism:
no design or in this case no divine intervention at the beginning of life. He used
heat conduction to destroy Darwinism:
The temperature gradient in the Earth near its surface is roughly r = O.0351\:jm at
the present time. He assumed that the Earth was a homogeneous sphere of radius
R :::::: 6400km. The evolution ofthe temperature T( r. t) at position r at time t obeys
Fourier's law

16B.9 Method of images for diffusion equation - image sources.
We know the Green's function (16.42) for the diffusion equation in the
infinite space R 3 (-16B.1). Now. consider the equation on the half
space x > 0 with the boundary condition that u =0 on the yz-plane.
(1) Dirichlet case. The unit impulsive source is placed at time t = 0
at x = x' > O. Let G- be the Green's function whose unit impulsive
source at time t =0 is placed at x = -x'. Then. H == G - G- satisfies
all the conditions of the problem. That is. H is the desired Green's
function for the half space with a homogeneous Dirichlet condition at
x = O. This means that H is the solution to the whole space problem
with +source at x' and -source at -x'. The latter is the image source
for the current problem.
(2) Neumann case. If the boundary condition at the origin is a homo­
geneous Neumann condition. then G+G- should be the desired Green's
function in the half space. That is. +source at -Xo is the needed image
source to make the problem a whole space problem. More complicated
cases discussed in 16A.S can be treated analogously. In the case of
diffusion equation. there is no difficulty for the Neumann problem on a
bounded region.
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must have been close to the present temperature for all t > 0 to allow life. Let us
choose this to be the zero point of temperature for all t > O.
(l) Using the numbers t', To and R, give an argument that the thickness of the
transition layer over which the temperature differs significantly from To is much
smaller than the Earth's radius at the present time.
(2) Hence, the full sphere problem simplifies to the l-d problem:

under the condition that T(x,O) =To for all x » 0, and T(O,t} =0 for all t > O.
Find the solution.
(3) Using the value of r. compute the age (in years) of the Earth. assuming that
the thermal diffusivity is Ii =0.7 x lO-6 m2/s.228
(4) Read the following to be a bit wiser as a physicist:
C. Darwin. The Origin of Species (Sixth edition Jan, 1872) Chapter X. " Sir ,,_
Thompson concludes that the consolidation of the crust can hardly have occurred
less than 20 or more than 400 millions years ago. but probably not less than 98 or
more than 200 millions years:'
Ibid .. Chapter XY...... and this objection. as urged by Sir William Thompson. is
probably one of the gravest as yet advanced. I can only say firstly, that we do not
know at what rate species change as measured by years. and secondly. that many
philosophers are not as yet willing to admit that we know enough of the constitution
of the universe ..."

Xow we know Darwin was perfectly right. Thompson did not know the ra­
dioactivity. In a certain sense. in retrospect at least. Darwin pointed out the exis­
tence of unknown physics.

Later. Huxley commented: Mathematics may be compared to a mill of exquisite
workmanship. which grinds your stuff of any degree of fineness; but nevertheless,
what you get out depends what you put in: and as the grandest mill in the world
will not extract wheat-flour from peascods, so pages of formulae will not get a def­
inite result out of loose data. However. in this case the defect of the theory was
much more serious. In any case Darwin did not have much respect of mathemat­
ics: Boltzmann was strongly influenced by Darwin, and he suggested that the 19th
century may be called the century of Darwin.

16B.I0 How to use Green's function: homogeneous bound­
ary problems. In the case of the diffusion equation (with a source
term -alBA).

(16.66)

228The number obtained here is ridiculously short (although much longer than
some beliefs based on the misunderstanding of the Bible).
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even if the boundary condition is homogeneous I we must take into ac­
count the initial condition (-1.18):

¢(x,O) =f(x). (16.67)

We already know that the nitial condition can be absorbed into the
source term (-16B.S). so that

a'l/J7it - D.6.¢ =o'(x. t) + f(x )b(t). (16.68)

Thus the solution to (16.66) + (16.67) with a homogeneous boundary
condition can be written in terms of the Green's function as

VI(a:. t) = in dy lot dsG(x. tly· s)O'(y. s) + in dyG(x. tly, O)f(y)·

(16.69)
Here D is the domain of the problem (cf. 38.4).

To solve inhomogeneous boundary value problems. we can use
l6B.!I. but there is a clever trick. See 18.5.

Discussion.
Solve the following semilinear parabolic equation to order ( in free l-space:

f)u 1 f)2U 3-=---w
f)t 2 f):r2

with the initial condition

(I6.iO)

(I6.iI)

Here 0 is a small positive constant. Demonstrate that the order e term is asymp­
totically (for t/o» 1) proportional to In(t/6}.229

16B.II Analogue of Green's formula for diffusion equation.
We have a formula analogous to Green's formula (-16A.19) for dif­
fusion equation. This generalization will be postponed to 38.

229lf the reader is familiar with the renormalization group theory, it is immedi­
ate from this observation that the problem has a renormalization group structure
governing the long-time behavior.
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(16.73)

16.C Green's Function for Wave Equation

16C.l Free-space Green's function for 3-wave equation. We
wish to solve

(~22 _C2A)¢ == o(t)o(z). (16.72)

It is not hard to guess (from physics) a spherical symmetric solution as

¢(z, t) == o(lzl - ct) e(t),
47rclzl

where the step function e is put to satisfy the causality. Check that
this is indeed the solution. Now with the aid of space-time translational
symmetry. we obtain the Green's function for the free space as

G( I )_ 6(lz - y l - c(t - s))O(.t _ )
z.ty.s - I I 'C/ S,

47rC Z - Y

(16.74) is called the retarded Green ~s function.

(16.74)

Exercise.
(1) One way to obtain the Green's function for the wave equation is to use its
temporal Fourier transformation (the Helmholtz equation):

Here k = .c[c. Obtain

(16.75)

(16.76)

(2) There is a point source of wave at the origin. Describe the wave radiated from
this source (respecting causality). That is. solve

(c- 2a;- ~)u{.r.t) =Qcos:.oJt6{x) (16.77)

in 3-space. respecting the radiation condition (i.e.• there is no incoming wave).
(3) The same as (2) but with a point (oscillating) dipole at the origin. That is,
solve the wave equation with the source

p(x.t)= -p.v6(x)cos:.oJt.

where p is the dipole strength. Again respect causality.

(16.78)

(16.79)

16C.2 Retarded and advanced Green's functions. Since the wave
equation is time reversal symmetric (-+1.14),

¢(z. t) == 6(~Z;cTz~t) e( -t).
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must also be a solution. This is a strange 'anti-causal' solution, and is
called the advanced Green's function in contrast to (16.74).

16C.3 Method of descent for wave equation. Applying this
method explained in 16A.5 to the retarded Green's function (16.74),
we can construct the retarded Green's function for 2-space as

G(zly) = e(ct -lir - yl) e(t).
21fcJc2t - lir - yl2

(16.80)

Exercise.
Appl:y the method of descent to the Green's function (16.76) of the Helmholtz equa­
tion.

16C.4 Afterglow. Notice that the 2-space Green's function for the
wave equation is not zero for Iz - yl < ct. This implies that for an ob­
server in 2-space a flash of a lamp at a distance brightens up the world
slightly even after the first pulse arrived to the observer (afterglow ef­
fect) (see also 40.8). We will see this is a feature of even dimensional
space (-32D.I0).

The difference between odd and even dimensional spaces also ap­
pears in the spherical wave as follows:

¢(r.t) = u(r)e- i
....:

t
.

Then.u obeys the Helmholtz equation (-27A.24. 39)

EPu d - 1 f}u k2 0
EJr2 + -r- EJr + ' u = .

(16.81)

(16.82)

where k: = w/ c. The general solution for this can be written in terms
of

1
(16.83)

The Bessel functions with half odd orders are written in terms of
trigonometric functions. but not elementary otherwise (-27, 27A.l9).

l6C.S Method of images for wave equation. This is almost a rep­
etition of what we have seen in 16A.7 and 16B.9. If we assume that
the boundary condition is Dirichlet. then the corresponding Green's
function reads

G(z.tl .s) = 6(lz - yl- c(t - s))e(t-sl- 8(lz - y'l- c(t - s))e(t-s).
y 41fclz - yl 47i'CIZ - y'\

(16.84)
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.....

where y' is the position mirror symmetric to y with respect to the yz­
plane. This is an idealized reflection from a hard wall. Consider the
Neumann case.

Exercise.
With the aid of the method of images, write down the solution to the 1 dimensional
wave equation

(!:... _c2 8
2

) U =0 (16.85)
8t2 8x2

011 the half line [0.+oc) with the fixed end condition at x = 0 and the initial
condition

ult=o = f(x), ~u I =g(x), (16.86)
vt t=O

where itO) =g(O) =O. [This is ~OT a Green's function problem.]

16.D Laplace Equation in 2-Space

16D.I What do we know from complex analysis?
(l) The real and imaginary parts of a holomorphic function (-2A.8)
are harmonic functions (-5.6). log 111 is harmonic on the region where
1 is holomorphic (-5.7) and nonzero.
(2) Let 'lL be a harmonic function on a simply connected region D.
Then. there is a holomorphic function ¢ on D such that its real part is
u. '1/.1 is unique up to a pure imaginary additive constant (-5.8).
The uniqueness follows from the Cauchy-Riemann equation (-5.3);
suppose there are two holomorphic functions hand 12 such that ~h =
~h =u and~h = 'VI and ~h = V2· Then partial derivatives of VI - V2

vanish. so it must be a constant. But since real part of 1 has no free­
dom of choice. the constant must be real.
(3) Harmonicity is conformal invariant (-10.16). 0

16D.2 Neumann problem can be reduced to Dirichlet prob­
lem: The Neumann problem:

av
AV = 0 (in D). an (s) = g(s) (on aD) (16.87)

is converted to the problem to solve its conjugate harmonic function U
(-5.6). which is the solution to the Dirichlet problem:

AU = 0 (in D). U(s) = -1s
g(s)ds == h(s) (on aD), (16.88)
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where a is any point on 8D. 0
Notice that the Neumann problem (16.87) is meaningful only when

(-1.19(3): 36.7)

f g(s)ds =O. (16.89)
leo

[Demo] Let U and V be conjugate harmonic functions. Then, we have

8U 8V
8n = 8s'

8U 8V-:=:--,
8s an (16.90)

where n is the outward normal and s is the arc length parameter (the
positive direction ee orientation of s in the standard way (-6.4)). They
are disguised Cauchy-Riemann equations (-5.3).

From the second equation in (16.90). we get the condition for the
Dirichlet problem (16,88). Thanks to (16.89) hIs) is a univalent func­
tion on the boundary, 0

16D.3 Solving Dirichlet problem by conformal map:
(1) Find a conformal map which maps the domain D onto a unit disk
or the upper half plane (-10.11).
(2) Solve the transformed problem on the simplified domain. This can
be done with the aid of Poisson's formula 16D.8.
(3) Transform back to the original variable using the inverse conformal
transform of the one used in (1).
However. the use of Green's function unifies everything we need.

16D.4 Green's function: G(z. zo) is called the Green's function for
the region D with the pole at ZOo if
(1) G(z.zo) is harmonic (-2C.11) w.r.t. z on D\ {zo}.
(2) In some nbh of zo G(z: zo) + (1/2n) log Iz - zol is harmonic.P?
(3) For any ( E aD G(z. zo) - 0 when z approaches (from inside of D.

16D.5 Agreement with the previous definition. Let us compute
the Laplacian of the Green's function explicitly. The Green's function
for a region D call be written as

1 1
G(z. zo):=: h - 2n log [z - 201 :=: h - 2n log Ir - rol· (16.91)

where h is a harmonic function without any singularity and 2 = X + iy,
r = (x. y). etc. Let us integratel:1G over a small disk Dr of radius r

2301n many standard complex function theory books. 1/21T in front of log is not
included. Then the Green's function is the solution to the equation with the source
term 2rrt instead of () customary to the PDE theory.
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(16.95)

(16.96)

centered at zo:

lim r dxdy~G = -lim -2
1 r del r - r O

l2= -1, (16.92)
r-O JDr r-O 1r lso, r - ro

where eis the length element. Thus, the definition in 16D.4 is in full
agreement with the definition of Green's functions in I6A.I. See also
16A.4.

I6D.6 Example: Let Zo be a point in the open unit disk. Then,
the Green's function for the unit disk with the pole (source) at Zo is
given by

G(z. zo) = -2
1

log 11 - ZOz I (16.93)
1r z - Zo

o
[Demo] Except for ':0 (1 - ':0':)/(': - ':0) is holomorphic on the unit disk, so (16.93)
is harmonic except at ':0 due to 16D.4(1). Obviously, G + (1/21r) log I.: - zol is
harmonic near ':0. G vanishes on the unit circle due to 10.12. Hence 16D.4(1)-(3)
are all satisfied. 0

Exercise.
Express (16. i5) in terms of the polar coordinates. That is. set z = re'", and
':0 = roe;lio• The result reads

G(.:. ':0) = _2- ln r2 + rg - 2rro cos(O - 00 ) . (16.94)
41r 1 + (rroF - 2rrocos(0 - 00 )

Xext , with the aid of 16D.11. find the Green's function for a disk of radius a. Check
the conservation of heat flow at the rim. That is. integrate the outward heat flux
and show that the total flow leaving the disk is equal to unity. if the temperature
distribution is given by (16. i5).

16D.7 Green's function solves Dirichlet problem: Let D be a
region with aD being sufficiently smooth. Let G be the Green's func­
tion for this region. and u be a harmonic function on D and continuous
on the closure of D. Then. for zED

u(z) = r u(() aG~(. z) ds.
JaD n

Here aIan is the outward normal derivative at (. and s is the contour
length coordinate of ( along the boundary curve. 0
This is a familiar formula (-+16A.21).

I6D.8 Poisson's formula: If u is harmonic on Izi < R and con­
tinuous on lzl $ R. then on Izi ::; R

1 r21r R2 - r 2

u( r. fJ) = 21r Jo u(R. </» R2 _ 2Rr cos(fJ _ </» + r 2d</>.
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o
This is obvious from 16D.6 and 16D.7 (cf. 18.6).

l6D.9 Solution to Dirichlet problem on disk: Schwarz' the­
orem: Let f (¢) (0 ~ ¢ < 271") be integrable.P! Then

1 r: R2 _ r2

u(r.O) = 2'Jr 10 j(¢) R2 _ 2Rrcos(0":" ¢) + r 2d¢ (16.97)

is harmonic on Izi < R. 0
The first half is essentially 16D.8. but explicitly we can apply (-19.17) the Lapla­
cian to (16.97):

1 12
". (Re iO + z)~u(r.6) =-? dof(o)~'R R' =O•

• 7i 0 e' O - z
(16.98)

16D.I0 Fourier expansion of harmonic function on the disk:
Under the same assumptions in l6D.8, u can be Fourier-expanded in
Izi < R as

(16.99)

where the coefficients are given by

an - ~ rZ
1': ui H. 0) cosn8dO. (for n = 0.1.···) (16.100)

'Jr l«
bn - ..!:. t" 1.l(R.(J) sin n8dO. (for n = 1. 2.... ). (16.101)

'Jr Jo

o
[Demo] The integral kernel in the Poisson formula can be Fourier-expanded as

R2 _ r 2 ec (r) Tl
R2_2RrCOS((}_o)+r2=1+2~ R cosn(6-lP). (16.102)

This follows easily from «+;;v« -;;) =1+2 2:(.:/()Tl with ( =ReitZ> and z=re'",
This is uniformly convergent, so (....A5.1S) we may integrate the expansion of the
integrand of the Poisson integral formula termwisely, The result is the one we
wanted. 0
The 3-space version of this formula is the spherical harmonics expan­
sion.

231i.e.. Lebesgue integrable (-19.81). so this theorem is distinct from Poisson's

formula.
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16D.II Conformal mapping and Green's function: Let t!:1 be
a region on the w-plane whose Green's function is G~(w, wo), If a con­
formal map (-10.1) w = f(z) maps a region D on the z-plane onto
t!:1. then

GD(Z, zo) == G~(f(Z)l f(zo)) (16,103)
is the Green's function for the region D with the pole at Zo such that
Wo = j(zo), 0
This theorem with 16D.9 and the Riemann mapping theorem (-10.10)
together demonstrate that for any singly connected region, there is a
Green's function.
[Demo] We have only to check 16D.5, Thanks to 10.16 Gv(z,zo) is harmonic on
D except at =0. / is continuous on the closure of ~.232 so GD vanishes when ::
approaches aD from inside. Now we have

2"GD(=. =o)+log 1=-':01 = 21TGA(f(.:),/(zo)+log I/(z)- /(zo)I-log I/(':; =~~zo) /.

{16.104}
G~ ( U·. u'o) + (1/21r )log Iu: - It'o 1 is harmonic near Wo and / is holomorphic near zo.
so the last term is harmonic. 0

16D.12 Green's function for a region D: Let w = f(z) be a
conformal map which maps the region D on the z-plane onto the unit
disk. Then the Green's function of D with the pole at Zo E D is given
by (-10.11)

o
1

1 - !(zo)!(z) I
G(z. zo) = log j(z) _ !(zo) . (16.105)

(16.106)

I6D.I3 Harmonic function on the half plane: Let f(x) (-00 <
x < 00) be integrable. Then

1 JX yf(TJ)
u(x. y) = - 2 ( )2dTJ

1r -00 Y + x - TJ

is harmonic on the upper half plane. If Xo is a continuous point of
j. then u( x. y) - j (xo) when z approaches to Xo from above. If
! is uniformly continuous on Xl $; X $; X2, then the convergence of
u(x. y) - f(x) is uniform. 0
[Demo] The integral converges uniformly for y > 0, so we may exchange the or­
der of differentiation and integration. Notice that the imaginary part of 1/(:; - 1})
is harmonic. so the integral is also harmonic. The convergence result will not be
proved here. 0

232\,"e must demonstrate this - Cararheodory's theorem.
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