
15 Green's Functions for ODE

Green's functions for second order linear ODE are con­
structed explicitly, Symmetry of the Green's function can
be demonstrated clearly.
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Summary:
(1) Understand the method to construct a fundamental solution in
15.2.
(2) Ifwe can obtain a fundamental system of solutions, we can construct
the Green's function for a regular Sturm-Liouville problem (15.6-7),

15.1 Fundamental solution exists for ODE. Let

(15.1)

where ao(x) :f. 0 and ao.'·· . an are smooth functions. Then LU = 0
has a fundamental solution (...... 14.2). The difference of any two fun­
damental solutions is a solution to the homogeneous equation LU = 0
(-llE.13). 0
We will demonstrate this for n =2 below through explicitly construct­
ing a fundamental solution.

15.2 Proof of 15.1 for n = 2. 'We wish to find a solution to

(
d? d )

ao dx2 + al dx + a2 w(xjy) =8(x - y). (15.2)

Regard x as the time variable. and assume that w(xly) ...... 0 as x ­
-00. Then. causality implies that w(xjy) = 0 for x < y. d2wldx2

cannot have a singularity worse than c5( x - y), so that dwIdx is at
worst discontinuous at x = y. and w is continuous at x = y (-14.15).
Hence. we may assume w(y + Oly) = O. Since (15.2) is a second order
ODE. we can construct its solution uniquely with one more condition.
Integrate (15.2) from x = y - EO to Y + EO for infinitesimal EO > O. We get
(w(1) == dw/dx)

ao(y)[w(ll(y + Oly) - w(l)(y - Oly)] = 1. (15.3)
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Here we have used the continuity of ao and w. We have already assumed
that w is zero for x < y. so that this equation implies

ao(y)w(ll(y +Diy) = 1. (15.4)

(15.5)

(15.7)

This is the needed second condition. In this way, we can construct a
solution to (15.2).

15.3 Example: damped oscillator under an impact. Find a
fundamental solution t0219

d2x dx 2
dt2 + 2kdi + w x = b(t - s).

The fundamental solution constructed in 15.2 reads for this case

w(tis) = (w2 - k2)-1/2e-k(hslsin [Jw2 - k2(t - s)] 8(t - s). (15.6)

15.4 Regular Sturm-Liouville problem.

LSTU;:::' [d~P(X) d~ + q(X)] u = 0

under the following boundary condition is called a regularSturm-Liouville
problem (cf. 21A.7). if P is of constant sign:

Ba[u] - Ap(a)'u'(a) - Bu(a) = 0,
Bb[u] - Cp(b)u'(b) - Du(b) =O.

'where A. B. C and D are constants (cf. 21A.7).

(15.8 )
(15.9)

(15,11)

15.5 Theorem. The Green's function for a regular Sturm-Liouville
problem

LST'U = 6(x - y) (15.10)

under the above boundary condition exists. if the operator does not
possess zero eigenvalue. The Green's function, when it exists, is a sym­
metric function of x and y. 0

Exercise.
Under what condition does the following operator with the boundary condition:
u(O) bounded and uta) = O. not haw the Green's function?

L /I 1, (2 16)u =u + -t1 + k - - t1.
Z' x2

219The best way to solve this under the condition x = 0 for t < sand x'(s+O) = 1
(this corresponds to (15.4» is to use the Laplace transformation (.....33).
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The symmetry of the Green 's function is proved by explicitly con­
structing the required Green's function as follows:

15.6 Explicit form of Green's function, The Green's function
for a regular Sturm-Liouville problem in 15.4 is given by

for x < y,
for x > y,

(15.12)

where K-1 = P(X)(U1-U~ - u2uD (which is actually a constant); Ul is a
nontrivial solution to CSTu = 0 with B; [u] = O~ and U2 is a nontrivial
solution to CSTu = 0 with Bb[u] = 0.0
Indeed. G(xIY) =G(Ylx) (-20.28. cf. 16A.20). As we will see soon,
{U1- lt2} is a fundamental system of solutions (-24A.ll) for CSTu =O.

(15.13)

15.7 Construction of Green's function. From £:'STG = 6(x - y).
we see that G(y + Oly) =G(y - OIY). and

[
D I) ]p(y) ax G(xIY) l.r=y+o - ax G(xIY) Ix=y-o = 1.

See (15.3) in 15.2. We can always construct U1 and U2 as stated above.
Let us construct G in the following form:

crvSJt'nJ IS ~~

by W(U// 1.Al-) "* 0 •

• Tk« ~r- e- Cevo.. /:...t:L

(o.,.I-YD ({.ru!. b7' /,.1M- jv"rIrI

scJ..'''j ),7 k.

(15.15)
(15.16)

(15.14)

(15.17)

for x < y.
for x> y.

C1{y)U1(Y) - C2(Y)U2(Y)'

Cl(Y)U~(Y) - C2(Y)U~(Y) = -1/p(y).

To satisfy the conditions at x = y. we get

We can solve this for C1 and C2 only if U1u2-u~U2 ::j:. 0 (that is. the Wron­
skian (-24A.6) Of'Ul and U2 is nonzero). but this is guaraateed.F"
Since Ul andu2 satisfy .csTu = O.

~[P(X)(UIU; - U~U2)] = 'U1.cSTU2 - U2£:'STUI =O.
dx

Hence
(15.18)

220 Xotice that this condition is the condition that the Sturm-Liouville eigenvalue
problem {....35.1} does not have zero eigenvalue. 111112 - 11~ 112 = 0 implies that
d(ud!12l/dx = 0 or III ex: 1.12' That is. III satisfies £STUI = 0 and Ba[Ul] =
Bb[Ul] =O. and Ul ~ O. Hence. III is an eigenfunction belonging to O.
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is a nonzero constant. Using this constant, we can solve as Cl =K U2
and C2 = KUl.

15.8 Remark. If we know a fundamental solution w(xly) to £u =
6(x - Y), then the general solution to this inhomogeneous equation can
be written as (-11B.13)

G(xly) =w(xly) + A(Y)Ul(X) + B(Y)U2(X). (15.19)

A and B can be determined to satisfy the boundary conditions (they
can depend on y).

15.9 Examples. The following examples can be solved either by the
method of 15.7 or 15.8.
(1) u" = 0 with the boundary conditions Bo[u] = u'{O) - u{O) = 0
and BIta] = u'(l) = O. The Green's function for this is G(xly) =
(z - y)6(x - y) - (x + 1).221
(2) (J2jdx2 + k2)u =0 with the boundary condition Bo[u] =u(O) = 0
~nd B 1 [tt] == u( 1) = 0 (assume sin k f:: 0). The Green's function for this
IS

G(xl- ) = { s~nkxs~nk(y -l)jks~nk
- y S111 ky sin k(x-I) j k sin k

for x < y.

for x > y.
(15.20)

Exercise.
(A) Obtain the Green's function with a Dirichlet condition of the equation

d ( dll)..jX- ..jX- + a2u =0
dr dr

011 [O.L]. knowing that the general solution to this equation is given by

Il(.T) =Asin(2a..jX) + B cos(2a..jX).

(Calculation of K is messy. so you may forget about it.)
(B) Determine the Green's function for

d d 1
L = -x- --

dx dx x

with the homogeneous boundary conditions ufO) =u(l) =0.:122

(C) Consider the following l-Schrodinger problem

(-~ + F)1,:' = E,,:.

(15.21 )

(15.22 )

(15.23)

(15.24)

221 The definition of e(x - y) at x =y does not matter. That is. we may interpret
e as a generalized function (-14.4).

222 Hint: The equation is equidimensional (-llB.14).
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where F vanishes at infinity. If this equation has a bound state (i.e., a solution
in L2-spaee -20.19. in otherwise normalizable as a wave function). it cannot be
degenerate. In particular. the lowest energy bound state (ground state) cannot be
degenerate. Prove this showing or answering the following:
(1) Degeneracy implies that there are two independent solutions for a given energy.
What must be their \Vronskian?
(2) The \'\'ronskian for localized state is zero.

(D) Show that the Green's function for the following operator

[
a a 11

2]
-(1- x2 ) _ ---
ax dx 1- x2

(15.25)

with the boundary condition that the solution is bounded at x = ±l. where n E N.
is given by

for ;r :s y.

G(xl ) =~ (1 +x)(l- Y) )"/2
Y 2n (l-x)(l+y)

(15.26)

15.10 Theorem [Inhomogeneous boundary condition]. The so­
lution to the following inhomogeneous boundary value problem:

Cu(x) = 'P(x).
Ba[u] - a. Bb[u] ={3.

(15.27)
(15.28)

(15.30)

where L. Ba and Bbare the same as in 15.4. and BD i= O. is given by

u{x) = lab dyG(xly)'P(Y) + p(a)B-1a (~G) _ p(b)D-1{3 (~G)
VY y=a VY y=b

(15.29)
[Demo] First. we note an analogue of Green's formula (-16A.19. d. 2C.15)

1" dxu E» -1" dxrEu =p(U!,1 - ult')I:.

Let t'(.r) == G(xly). and U be the solution to the problem. Then, (15.30) implies

rO {()G }~=o
u(y) = Ja axG(xly),p(x) + p(x)[u(x) ()x - Gul(x)] z=a' (15.31)

Exchanging x and y in this formula. and using the symmetry of the Green's function
(-15.6.20.28). we get (note Bo[u] = i3 and Bo[G] =0)

Du(b){)IIG(xIY)III=b - Du'(b)G(xlb) = -i3{)IIG(xlb) (15.32)

An analogous formula holds at the other end of the region. These relations allow
us to rewrite the second term of (15.31) as desired.
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Exercise.
Use the Green's function to solve

(d~2 + k
2)U =sin kx

on [0.1] with the boundary condition u(O)=u(l) = 1.

(15.33)

15.11 Another method to solve inhomogeneous case. Practi­
cally. the following (usual) splitting method is also very useful: Sepa­
rate the problem (15.27) + (15.28) as
(I) .cUI = 0 with the inhomogeneous boundary condition Bo fUll = 0:.

Bb['UI] = {3.
(II) .cU2 = 'P with the homogeneous boundary condition B o [U2] = 0,
Bb[U2] = o.
The solution we want is given by 'Ul + U2' (I) can be solved as usual
(-;.11B). and (II) can be solved with the aid of the Green's function
as U2 =JdyG(xIY)'P(Y)'
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