15 Green's Functions for ODE

Green's functions for second order linear ODE are constructed explicitly. Symmetry of the Green's function can be demonstrated clearly.

Key words: δ-function. Green's operator, fundamental solution. Greens function, Sturm-Liouville problem.

Summary:

(1) Understand the method to construct a fundamental solution in 15.2.
(2) If we can obtain a fundamental system of solutions. we can construct the Green's function for a regular Sturm-Liouville problem (15.6-7).
15.1 Fundamental solution exists for ODE. Let

$$
\begin{equation*}
\mathcal{L} \equiv \sum_{i=0}^{n} a_{i}(x)\left(\frac{d}{d x}\right)^{n-i} \tag{15.1}
\end{equation*}
$$

where $a_{0}(x) \neq 0$ and $a_{0} \cdot \cdots, a_{n}$ are smooth functions. Then $\mathcal{L} u=0$ has a fundamental solution ($\rightarrow \mathbf{1 4 . 2}$). The difference of any two fundamental solutions is a solution to the homogeneous equation $\mathcal{L} u=0$ $(\rightarrow 11 \mathrm{~B} .13)$.
We will demonstrate this for $n=2$ below through explicitly constructing a fundamental solution.
15.2 Proof of 15.1 for $n=2$. We wish to find a solution to

$$
\begin{equation*}
\left(a_{0} \frac{d^{2}}{d x^{2}}+a_{1} \frac{d}{d x}+a_{2}\right) w(x \mid y)=\delta(x-y) \tag{15.2}
\end{equation*}
$$

Regard x as the time variable. and assume that $w(x \mid y) \rightarrow 0$ as $x \rightarrow$ $-\infty$. Then. causality implies that $w(x \mid y)=0$ for $x<y . d^{2} w / d x^{2}$ cannot have a singularity worse than $\delta(x-y)$, so that $d w / d x$ is at worst discontinuous at $x=y$, and w is continuous at $x=y(\rightarrow \mathbf{1 4 . 1 5})$. Hence. we may assume $w(y+0 \mid y)=0$. Since (15.2) is a second order ODE. we can construct its solution uniquely with one more condition. Integrate (15.2) from $x=y-\epsilon$ to $y+\epsilon$ for infinitesimal $\epsilon>0$. We get $\left(w^{(1)} \equiv d w / d x\right)$

$$
\begin{equation*}
a_{0}(y)\left[w^{(1)}(y+0 \mid y)-w^{(1)}(y-0 \mid y)\right]=1 \tag{15.3}
\end{equation*}
$$

Here we have used the continuity of a_{0} and w. We have already assumed that w is zero for $x<y$. so that this equation implies

$$
\begin{equation*}
a_{0}(y) w^{(1)}(y+0 \mid y)=1 \tag{15.4}
\end{equation*}
$$

This is the needed second condition. In this way, we can construct a solution to (15.2).
15.3 Example: damped oscillator under an impact. Find a fundamental solution to ${ }^{219}$

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+2 k \frac{d x}{d t}+\omega^{2} x=\delta(t-s) . \tag{15.5}
\end{equation*}
$$

The fundamental solution constructed in $\mathbf{1 5 . 2}$ reads for this case

$$
\begin{equation*}
u^{\prime}(t \mid s)=\left(\omega^{2}-k^{2}\right)^{-1 / 2} e^{-k(t-s)} \sin \left[\sqrt{\omega^{2}-k^{2}}(t-s)\right] \Theta(t-s) \tag{15.6}
\end{equation*}
$$

15.4 Regular Sturm-Liouville problem.

$$
\begin{equation*}
\mathcal{L}_{S T} u \equiv\left[\frac{d}{d x} p(x) \frac{d}{d x}+q(x)\right] u=0 \tag{15.7}
\end{equation*}
$$

under the following boundary condition is called a regular Sturm-Liouville problem (cf. 21A.7). if p is of constant sign:

$$
\begin{align*}
B_{a}[u] & \equiv A p(a) u^{\prime}(a)-B u(a)=0 \tag{15.8}\\
B_{b}[u] & \equiv C p(b) u^{\prime}(b)-D u(b)=0 \tag{15.9}
\end{align*}
$$

where $A . B . C$ and D are constants (cf. 21A.7).
15.5 Theorem. The Green's function for a regular Sturm-Liouville problem

$$
\begin{equation*}
\mathcal{L}_{S T} u=\delta(x-y) \tag{15.10}
\end{equation*}
$$

under the above boundary condition exists. if the operator does not possess zero eigenvalue. The Green's function, when it exists, is a symmetric function of x and y.

Exercise.

Under what condition does the following operator with the boundary condition: $u(0)$ bounded and $u(a)=0$. not have the Green's function?

$$
\begin{equation*}
L u=u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(k^{2}-\frac{16}{x^{2}}\right) u . \tag{15.11}
\end{equation*}
$$

[^0]The symmetry of the Green's function is proved by explicitly constructing the required Green's function as follows:
15.6 Explicit form of Green's function. The Green's function for a regular Sturm-Liouville problem in 15.4 is given by

$$
G(x \mid y)= \begin{cases}K u_{1}(x) u_{2}(y) & \text { for } x<y, \tag{15.12}\\ K u_{2}(x) u_{1}(y) & \text { for } x>y,\end{cases}
$$

where $K^{-1}=p(x)\left(u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}\right)$ (which is actually a constant); u_{1} is a nontrivial solution to $\mathcal{L}_{S T} u=0$ with $B_{a}[u]=0$, and u_{2} is a nontrivial solution to $\mathcal{L}_{S T} u=0$ with $B_{b}[u]=0$.
Indeed. $G(x \mid y)=G(y \mid x)(\rightarrow$ 20.28. cf. 16A.20). As we will see soon, $\left\{u_{1}, u_{2}\right\}$ is a fundamental system of solutions $(\rightarrow \mathbf{2 4 A} .11)$ for $\mathcal{L}_{S T} u=0$.
15.7 Construction of Green's function. From $\mathcal{L}_{S T} G=\delta(x-y)$. we see that $G(y+0 \mid y)=G(y-0 \mid y)$. and

$$
\begin{equation*}
p(y)\left[\left.\frac{\partial}{\partial x} G(x \mid y)\right|_{x=y+0}-\left.\frac{\partial}{\partial x} G(x \mid y)\right|_{x=y-0}\right]=1 . \tag{15.13}
\end{equation*}
$$

See (15.3) in 15.2. We can always construct u_{1} and u_{2} as stated above. Let us construct G in the following form:

$$
G(x \mid y)= \begin{cases}c_{1}(y) u_{1}(x) & \text { for } x<y . \tag{15.14}\\ c_{2}(y) u_{2}(x) & \text { for } x>y .\end{cases}
$$

To satisfy the conditions at $x=y$. we get

$$
\begin{align*}
c_{1}(y) u_{1}(y) & =c_{2}(y) u_{2}(y) . \tag{15.15}\\
c_{1}(y) u_{1}^{\prime}(y)-c_{2}(y) u_{2}^{\prime}(y) & =-1 / p(y) . \tag{15.16}
\end{align*}
$$

We can solve this for c_{1} and c_{2} only if $u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2} \neq 0$ (that is. the Wronskian ($\rightarrow 24 \mathrm{~A} .6$) of u_{1} and u_{2} is nonzero). but this is guaranteed. ${ }^{220}$ Since u_{1} and u_{2} satisfy $\mathcal{L}_{S T} u=0$.

$$
\begin{equation*}
\frac{d}{d x}\left[p(x)\left(u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}\right)\right]=u_{1} \mathcal{L}_{S T} u_{2}-u_{2} \mathcal{L}_{S T} u_{1}=0 \tag{15.17}
\end{equation*}
$$

Hence

$$
\begin{equation*}
p(x)\left(u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}\right) \equiv K^{-1} \tag{15.18}
\end{equation*}
$$

${ }^{220}$ Notice that this condition is the condition that the Sturm-Liouville eigenvalue problem $(\rightarrow \mathbf{3 5 . 1})$ does not have zero eigenvalue. $u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}=0$ implies that $d\left(u_{1} / u_{2}\right) / d x=0$ or $u_{1} \times u_{2}$. That is. u_{1} satisfies $\mathcal{L}_{S T} u_{1}=0$ and $B_{a}\left[u_{1}\right]=$ $B_{6}\left[u_{1}\right]=0$. and $u_{1} \neq 0$. Hence. u_{1} is an eigenfunction belonging to 0 .

- crossing' is guaranteed by $W\left(u_{1}, u_{2}\right) \neq 0$.
- The angle θ can be
controlled by uniform scaling by K.
is a nonzero constant. Using this constant, we can solve as $c_{1}=K u_{2}$ and $c_{2}=K u_{1}$.
15.8 Remark. If we know a fundamental solution $w(x \mid y)$ to $\mathcal{L} u=$ $\delta(x-y)$, then the general solution to this inhomogeneous equation can be written as ($\rightarrow \mathbf{1 1 B} .13$)

$$
\begin{equation*}
G(x \mid y)=w(x \mid y)+A(y) u_{1}(x)+B(y) u_{2}(x) \tag{15.19}
\end{equation*}
$$

A and B can be determined to satisfy the boundary conditions (they can depend on y).
15.9 Examples. The following examples can be solved either by the method of $\mathbf{1 5 . 7}$ or $\mathbf{1 5 . 8}$.
(1) $u^{\prime \prime}=0$ with the boundary conditions $B_{0}[u]=u^{\prime}(0)-u(0)=0$ and $B_{1}[u] \equiv u^{\prime}(1)=0$. The Green's function for this is $G(x \mid y)=$ $(x-y) \Theta(x-y)-(x+1){ }^{221}$
(2) $\left(d^{2} / d x^{2}+k^{2}\right) u=0$ with the boundary condition $B_{0}[u] \equiv u(0)=0$ and $B_{1}[u] \equiv u(1)=0$ (assume $\sin k \neq 0$). The Green's function for this is

$$
G(x \mid y)= \begin{cases}\sin k x \sin k(y-1) / k \sin k & \text { for } x<y \tag{15.20}\\ \sin k y \sin k(x-1) / k \sin k & \text { for } x>y\end{cases}
$$

Exercise.

(A) Obtain the Green's function with a Dirichlet condition of the equation

$$
\begin{equation*}
\sqrt{x} \frac{d}{d x}\left(\sqrt{x} \frac{d u}{d x}\right)+a^{2} u=0 \tag{15.21}
\end{equation*}
$$

on [0.L]. knowing that the general solution to this equation is given by

$$
\begin{equation*}
u(x)=A \sin (2 a \sqrt{x})+B \cos (2 a \sqrt{x}) . \tag{15.22}
\end{equation*}
$$

(Calculation of K is messy, so you may forget about it.)
(B) Determine the Green's function for

$$
\begin{equation*}
L=\frac{d}{d x} x \frac{d}{d x}-\frac{1}{x} \tag{15.23}
\end{equation*}
$$

with the homogeneous boundary conditions $u(0)=u(1)=0 .{ }^{222}$
(C) Consider the following 1 -Schrödinger problem

$$
\begin{equation*}
(-\Delta+V) \psi=E v ; \tag{15.24}
\end{equation*}
$$

[^1]where Vanishes at infinity. If this equation has a bound state (i.e., a solution in L_{2}-space $\boldsymbol{\rightarrow} \mathbf{2 0 . 1 9}$. in otherwise normalizable as a wave function). it cannot be degenerate. In particular. the lowest energy bound state (ground state) cannot be degenerate. Prove this showing or answering the following:
(1) Degeneracy implies that there are two independent solutions for a given energy. What must be their Wronskian?
(2) The Wronskian for localized state is zero.
(D) Show that the Green's function for the following operator
\[

$$
\begin{equation*}
\left[\frac{d}{d x}\left(1-x^{2}\right) \frac{d}{d x}-\frac{n^{2}}{1-x^{2}}\right] \tag{15.25}
\end{equation*}
$$

\]

with the boundary condition that the solution is bounded at $x= \pm 1$. where $n \in N$. is given by

$$
\begin{equation*}
G(x \mid y)=\frac{1}{2 n}\left(\frac{1+x)(1-y)}{(1-x)(1+y)}\right)^{n / 2} \tag{15.26}
\end{equation*}
$$

for $x \leq y$.
15.10 Theorem [Inhomogeneous boundary condition]. The solution to the following inhomogeneous boundary value problem:

$$
\begin{align*}
\mathcal{L} u(x) & =\varphi(x) \tag{15.27}\\
B_{a}[u] & =\alpha \cdot \quad B_{b}[u]=\beta \tag{15.28}
\end{align*}
$$

where $\mathcal{L} . B_{a}$ and B_{b} are the same as in 15.4. and $B D \neq 0$. is given by

$$
\begin{equation*}
u(x)=\int_{a}^{b} d y G(x \mid y) \varphi(y)+p(a) B^{-1} \alpha\left(\frac{\partial G}{\partial y}\right)_{y=a}-p(b) D^{-1} \beta\left(\frac{\partial G}{\partial y}\right)_{y=b} \tag{15.29}
\end{equation*}
$$

[Demo] First. we note an analogue of Green's formula ($-16 A .19$. cf. 2C.15)

$$
\begin{equation*}
\int_{a}^{b} d x u \mathcal{L} t-\int_{a}^{b} d x v \mathcal{L} u=\left.p\left(u v^{t}-u^{\prime} r\right)\right|_{a} ^{b} \tag{15.30}
\end{equation*}
$$

Let $v(x) \equiv G(x \mid y)$. and u be the solution to the problem. Then, (15.30) implies

$$
\begin{equation*}
u(y)=\int_{a}^{b} d x G(x \mid y)_{r}(x)+\left\{p(x)\left[u(x) \frac{\partial G}{\partial x}-G u^{\prime}(x)\right]\right\}_{x=a}^{x=b} \tag{15.31}
\end{equation*}
$$

Exchanging x and y in this formula. and using the symmetry of the Green's function $(\rightarrow 15.6 .20 .28)$. we get (note $B_{b}[u]=\beta$ and $B_{b}[G]=0$)

$$
\begin{equation*}
\left.D u(b) \partial_{y} G(x \mid y)\right|_{y=b}-D u^{\prime}(b) G(x \mid b)=-\beta \partial_{y} G(x \mid b) \tag{15.32}
\end{equation*}
$$

An analogous formula holds at the other end of the region. These relations allow us to rewrite the second term of (15.31) as desired.

Exercise.

Use the Green's function to solve

$$
\begin{equation*}
\left(\frac{d^{2}}{d x^{2}}+k^{2}\right) u=\sin k x \tag{15.33}
\end{equation*}
$$

on [0.1] with the boundary condition $u(0)=u(1)=1$.
15.11 Another method to solve inhomogeneous case. Practically, the following (usual) splitting method is also very useful: Separate the problem (15.27) $+(15.28)$ as
(I) $\mathcal{L} u_{1}=0$ with the inhomogeneous boundary condition $B_{a}\left[u_{1}\right]=\alpha$. $B_{b}\left[u_{1}\right]=\beta$.
(II) $\mathcal{L} u_{2}=\varphi$ with the homogeneous boundary condition $B_{a}\left[u_{2}\right]=0$. $B_{b}\left[u_{2}\right]=0$.
The solution we want is given by $u_{1}+u_{2}$. (I) can be solved as usual $(\rightarrow 11 B)$. and (II) can be solved with the aid of the Green's function as $u_{2}=\int d y G(x \mid y) \varphi(y)$.

[^0]: ${ }^{219}$ The best way to solve this under the condition $x=0$ for $t<s$ and $x^{\prime}(s+0)=1$ (this corresponds to (15.4)) is to use the Laplace transformation ($\rightarrow 33$).

[^1]: ${ }^{221}$ The definition of $\Theta(x-y)$ at $x=y$ does not matter. That is, we may interpret Θ as a generalized function (\rightarrow 14.4).
 ${ }^{222}$ Hint: The equation is equidimensional ($\boldsymbol{\rightarrow 1 1 B} .14$).

