
14 Generalized Function

The 8-function is not an ordinary function. and is mean­
ingful only inside the integral. The theory of distribution
in the sense of Sobolev and Schwartz rationalizes such ob­
jects like the 8-function. Rudiments of the theory is out­
lined from the practitioner's point of view. Calculation of
Green's functions may be facilitated by the theory of gener­
alized functions which justifies apparent abuses of classical
analysis.
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Summary:
(1) Generalized functions are defined by their outcome when they are
applied to test functions (14.4. 14.8). Whenever, the reader feels in­
tuition is doubtful. use test functions.
(2) Understand the definition of differentiation of generalized functions
(14.14). All the elementary rules of calculus survive for generalized
functions: besides. the order of limit and differentiation can always be
exchanged (14.18).
(3) Change of the variables in 6-function should not cause any problem
(14.12-14 ).
(4) Be familiar with convolution (14.22).

14.1 Green's function and delta-function. The fundamental idea
of Green was introduced at 1.8. where we realized that it is very con­
venient to introduce an object 00 which has weight 1 at point a but
zero elsewhere. If we consider the mass density distribution p(z ) cor­
responding to this weight distribution. then we need p(z) which is +00
at x = a but zero elsewhere. The symbol 8(x - a) was introduced for
such an object in 3.8 in conjunction to functional derivative. Already
such an object was justified within complex analysis as an example of
hyperfunction (-8B.12. 8B.13). Basically. to implement Green's idea
we have to solve. for example.

- bJ.'I/.' =8(x - a)
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under an appropriate boundary condition. We need a systematic the­
ory of such "density functions."

14.2 Green's function and fundamental solution. Let L be a
linear differential operator.210 Any solution to

L'I/J(x) =6(x - Y) (14.2)

is called a fundamental solution. If it satisfies, further, the auxiliary
conditions of the problem. we say the solution is the Green's function
for the problem. As we will see later (-16A.21 for an example), we
have only to consider homogeneous auxiliary conditions, so when we
say G(xIY) is the Green's function of a problem which is described by
the linear differential operator L and linear auxiliary conditions (-1.5)
AVi = f. we mean

LG(xly) =6(x - y) (14.3)

with the corresponding homogeneous auxiliary condition AG(xly) = O.

14.3 Motivation of the theory: Delta function as linear func­
tionaL Let V be a set of real-valued functions on R. Let us define
a map To : V - R as To(f) = f(O). Recall that To is exactly the
'integral' of f times () over R in the original 'definition' of 6 (-3.8 or
8B.13). The most obvious and important property of To is its linearity:

To(af + bg) = aTo(f) + bTo(g). (14.4 )

where a and bare reals. Therefore. we are tempted to write To in
terms of integral (-6.2) with some integration kernel 0: n(f) =
Jdx6(x)f(x) as in the original 'definition: However. for T6 there is
110 ordinary function () satisfying this equality. because its 'value' at 0
cannot be finite. Still. To is well-defined. Therefore. we define {) through
To:

14.4 Generalized function. Let Tq be a linear functional defined
on a set V of real-valued functions on R. The formal symbol q(x) such
that for f E V

Tq(f) = Jdxq(x)f(x) (14.5)

is called a generalized function. The following notation, reminding us
of the inner product (-20.3), is also often used for convenience:

Tq(f) = (q, J). (14.6)

210 A linear operator (-1.4) L is called a differential operator, if L](x) depends on
f(x) and its derivatives at x, For example. _d'l /dx'l + V(x). where V is a function.
is a linear differential operator.
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Thedefinition must include the following rule for changing the indepen­
dent variable. The rule is exactly the same as in the case of ordinary
functions:

Jdxq(x)j(x) = Jdstp'(s}q(<p(s))j(<p(s)), (14.7)

where q is a generalized function. f is a test function, and x = r.p( s)
defines the change of variable.

14.5 (i-function: an official definition.211 The symbol b(x) such
that.

T6(f ) =J6(x)f(x)dx = f(O) (14.8)

is called the b-junction. Since the variable x in 6 transforms as the
usual x in the ordinary functions. the symbol for the map f(x) -> f(a)
is written as 6(x - a) (as we already noted in 14.1):

Exercise.
(.-\ )
Evaluate
(1 )

(2)

./ 6(x - a)f(x)dx = J6(y)f(y + a)dy = f(a).

1
] 0

_5 6(:r ) log r (x + 5)d.r .

(14.9)

(14.10)

(14.11)

(B) A mass JI is located at .r =0 on an infinite string: that is the density of the
string is p(.r) =p+JJ6(.r). "'rite down the equation of motion for the string under
uniform tension T ( ......a1D.11). "'1' wish to consider the effect of the point mass on
the incident wave. The wan' F(f-x/c) is incident from r =-x. The displacement
is written as

( ) { F (t - x/c) + R{ t + :r/ c) for :r < 0,
u.r.t = T{t-x/c)for:r>O.

Show that
Til + IT' = -,F.

where -: = T/JIc. Find T in terms of F.212

(14.12)

(14.13)

211 It is often called the Dirac 6-function. ignoring the fact that this type of func­
tions han> been used for well over a hundred years.

212 51'1' G L Lamb. Jr. Introductory Applications of Parital Differential Equations

(Wiley. 1995).
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14.6 Value of generalized function at each point is meaningless.
The value of a generalized function at a point is totally meaningless.
because changing the value of a function at a point does not affect its
integral (-+19.3\ 19.7), Therefore, although 6-function was originally
'defined' such that 6(x) = 0 for x '# OJ according to our official def­
inition, we cannot mention anything about the value of 6(x) for any
x E R. Consequently, the product of delta functions containing com­
mon variables is a very dangerous concept.

Discussion.
However,
(A) Localization theorem of generalized functions. The value of a general'
ized function 9 at each point does not make sense, but it is possible to make such a
statement meaningful as 9 = 0 in a neighborhood of a point. To this end. we must
define 9 = 0 on an open set ('.

We say 9 = 0 on (', if (o,g) = 0 for any 0 E Cg'(U) (= the set of all the
ex functions whose support is in (', that is, 0 = 0 outside ('). Two generalized
functions / and g are equal on r: if / -- 9 =0 on ('.
Theorem [Localization theorem]. For any :r if there is its neighborhood on
which 9 = O. then 9 = 0 in the sense of generalized functions.
Theorem[Localization of derivatives). If f =9 on U, then their derivatives are
identical On U,
About the local properties. Section 3.2 of R. D. Richtmeyer, Principles of Advanced
Mathematical Physics vol.I (Springer. 1978) may be accessible.
(B) Of course. /(g) does not usually make any sense for generalized functions f and
g.

14.7 Multidimensional delta funcion. The definition of general­
ized functions on multidimensional space should be obvious (-+20.257
for curvilinear coordinate cases).

Exercise.
Let dr be the volume element in 3-space, and r be the radial coordinate of the
spherical coordinates. r is the position vector, Evaluate

(14.14)

Here r must be considered as a function of r. What is its difference from

(14.15)

14.8 Test functions. Since we cannot evaluate generalized functions
pointwisely. the only way to study the property of a generalized func­
tion is to apply it to functions in an appropriate function set V, The
set V is called the set of test functions.
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Discussion.
The choice of the test function set V is a matter of convenience. but the set must
satisfy some obvious conditions such as its closedness: if fn -+ f and fn E V,
then f should also be in V. If the set V is very poor. then many generalized func­
tions become indistinguishable. On the other hand, if V is too large, then we must
meticulously pay attention to minute details of the generalized functions. From
the practitioner's point of view. we need not pay much attention to V, but should
remember that very often V is the set of all the COC-functions with compact do­
mains (i.e., Cf) or the set of all the functions of rapid decay (or rapidly decreasing
functions. Schwartz-class functions):

V ={f: R -+ C. C X such that x n f(r)(x) -+ 0 as lxi- 00 for \:In,r EN}.

(In words. V consists of infinite times differentiable functions whose any derivative
decays faster than any inverse power.) The generalized functions defined on this V
is called generalized functions of slow growth.

14.9 Equality. Two generalized functions p and q are said to be
equal. 213 if no test function can discriminate them:

Tp(f) =Tq(f) for all the test functions! <===> p = q. (14.16)

14.10 Regular distribution. Let 'D be an appropriate test function
set (see the footnote in 14.8). If a generalized function q is equal to
some ordinary function, we say q is a regular distribution.

14.11 c5(ax) = lal- 1 c5 (x ). To demonstrate an equality of generalized
functions. the surest way is to return to the definition of the equality
14.9.

J6(ax)!(x)d(x) = Jb(y)!(y/a)!al-1dy = lal-1 itO/a) = J!al-16(x)f(x)dx

(14.17)
for any test function. so that we may conclude the desired relation.

14.12 c5(g( x)). Let 9 be a differentiable function. If 9 "# 0 at z. then a
sufficiently small neighborhood of x does not contribute to Jdx8(g)f.
If g(xo) = O. then g(x) ~ 9'(xo)(x - xo) locally. so we may replace
b(g(x)) with Ig'(xo)I-18(x - xo) locally (-14.11). In this way we have
the following general formula for differentiable g:

(14.18)

where the summation is over all the real zeros {Xi} of g.
Demonstrate this as a hyperfunction (-8B.13).

213This equality is consistent with the equality discussed in 14.6 Discussion (A).
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Exercise.
Evaluate
(1)

(14.19)

(2)

(3)

(4)

14

6{1- 5x)sinxdx. (14.20)

(14.21 )

(14.22)

14.13 Convergence of generalized function. A sequence of gener­
alized functions qn is said to converge to q. if

(qn. J) - (q. J) for all f E V. (14.23)

and is written as limn-+ x qn = q. If we use the integral form. we have

(14.24)

That is. limit and integration can be freely interchanged. if we interpret
an ordinary function as a regular distribution (-14.10). Consequently.
termwise integration of series can be performed freely. If we never take
the result outside the integral symbol. then we need not worry whether
the final result is again a regular distribution or not. Recall that Green's
functions (-1.8. 14.1. 16) always appear inside the integral symbol
in practice. Hence. calculus of generalized function becomes a powerful
tool especially when we construct and use Green's functions.

Discussion.
'Ye have learned that if the limit of a sequence {;,.7,,} converges weakly. then the
limit is a generalized function.
(A) Let G(.1'.tIY.O) be the Green's function for the diffusion equation in the free
space (-16B.l) Show that for a continuous f

We write this as

lim [ dyG(x.tly,O)f(Y) =1(.1').
1-0 JR3

u'-lim G(x. tly) =b(x - V)·
1-0
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where If-lim denotes the weak limit which is meaningful only inside the integration.
This is a possible definition of Dirac's 6-function.
(B) This observation allows us to introduce generalized functions in a different
way (due to Korevaar). We prepare a weakly con\'ergent214 sequence (called D·
fundamental series215 ) of sufficiently smooth functions {f'n} and declare its weak
limit to be a generalized function.216

Take a positive number sequence En such that limn En = O. Consider an
arbitrary sequence of non-negative continuous functions {lfn} such that Ifn(x) = 0
for 1.1'1 :::: En and 1: 'Pn(x)dx =1. (14.27)

The D-fundamental sequence {;n} defines the 6(x}.
(C) Demonstrate t hat indeed the sequence in (B) weakly converges to the l)-function
in the n .... oc limit.
(D) The following sequences are examples of Dvfundamerrtal sequences for the delta
function:

(14.31 )

(14.29)

(14.28)

(14.34)

(14.30)

ofor 1.1'\ :::: lin and n .. n2 jxl. otherwise.

1 [sin( n.r /2 l] 2
2nr. sil1(x/2) (due to Fejer -11.10)

nIl jX ih-ik1j"dk.. =- e ' '.
7rl+n 2J..2 ZiT_O<;.

sin n.r 1 j" ib:dl, 11" (I. )dl-- = e fl- = .. cos .rr. fl'.

7r.r ZiT -n 11 0

1 sin[(n + 1/2).1'] ..
? . (/?) (the Dirichlet kernel).
~ Ii sm.r ~

n[0(.r + 1/2/1) .. 0(.1''' 1/2n)]. (0 is the Heaviside step function),

(14.32)

(14.33 )

;,,(.1') =

;,,(.1') =

;,,(.1') =
;n(.r) =

;n('1') =

;11 (.1') =

;,,(:r)

n

;,,(.1') = Le2j
r. i J: forxE(-21i.211).

j=-n

(14.35 )

(14.36)

14.14 Differentiation of generalized functions. If q is an ordi­
nary differentiable function. then for f E V

Jq'(x)f(x)dx =- Jq(x)f'(x)dx.

214 w.r .t . a test function set
215D for distribution.
216 A precise definition in the original paper: J. Korevaar, Indagationes Math., 17,

1955. is much more elaborate. because he wished to construct a theory equivalent
to the one due to Schwartz. Here. the lecturer only wishes to make a subclass. so
only a grossly simplified version of the original is given.
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The right hand side makes sense, if f is differentiable. Our test function
(-+14.8) is always infinite times differentiable, so that we may regard
(14.36) as the definition of if: the derivative if of a generalized function
q is defined as the generalized function satisfying

(q',f) = -(qj'). (14.37)

By definition, generalized functions are infinite times differentiable.

Discussion.
Derivatives of generalized functions are given by the derivatives of its D-fundamental
sequence (if it is differentiable -14.18). As we can see in 14.13 some art' dif­
ferentiable many or infinite times but some are not. We may choose convenient
differentiable sequences without any contradiction.

Exercise.
(A) Show

.rli'(x) =-li{x).

(B) Let 0 f :r . y ) be 1 when x > 0 and y > O. and O. otherwise. Then.

(C) Evaluate
(1)

(2) 1:6' (;1.2 - l)cosxdx.

14.15 Examples.
(1 )

(14.38 )

(14.39)

(14.40)

(14.41 )

dd1xx l = sgn(x)::: { 1 for x ~ O. (14 2)
-1 for x < O. .4

The reader may conclude this by intuition.P? A standard demonstra­
tion may be to start with. for a test function [,

-Jdx IxIJ' (x) = - t dx x J' (z)+ [Ox dx x J' (x)

= lX dxf(x) - t. dxf(x) =Jsgn(x)f(x)dx.

(14.43)

21iThe value at x =0 does not matter.
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(14.45)

(2)
dsgn(x) = 28(x). (14.44)

dx

(3) The Heaviside stepjunctionE>(x) is defined by E>(x) = (1+sgn(x))/2.

d8(x) =6(x).
dx

14.16 All the ordinary rules for differentiation survive. For ex­
ample. the chain rule is applicable.
When the reader feels uneasy in some use or abuse of generalized func­
tions. always return to the definition 14.4: operate the generalized
function to test functions. See the next example.

14.17 Cauchy principal value P(l./x). P(l/x) is defined by

j x 1 jX f(x)
P-f(x)dx..-P -dx.

-x x -x X

where P is defined as 8B.10.
(1) \~'e have

dIn Ixl = P~.
dx x

(2) Note that

(14.46)

(14.47)

1
xf = 1 => f =P- + c6(x). (14.48)

x

where c is a constant. A demonstration follows. Note that obviously
xP(l/x) = 1. Let ¢ E V.

Jj(x)¢(x)dx Jf(x) [p~(¢(x) - ¢(O))x + ¢(O)] dx

- J[p~(¢(x) - ¢(O)) + f(x)¢(O)] dx

- JP;¢(X)dX +J(f(x) - p;) ¢(O)dx

- P J~dX + const. x ¢(O). (14.49)

Exercise.
Compute

P J1 cosec x dr,
-1
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14.18 Theorem [Differentiation and limit always commute].

(14.51)

o
This is a remarkably simple result. Termwise differentiation of series is
allowed. To demonstrate the theorem is easy: For 1 E V

(q~~ j) = -(qn. /') -+ -(q, /') = (q', j). (14.52)

Compare this with the situation of the ordinary calculus (-+18.1 foot­
note. A5.16): we need uniform convergenceoftermwisely differentiated
series.

Exercise.
From

tanh (.;) - sgnz

14.19 Example.

14.20 Example: Coulomb potential. In 3-space we have

Let us take a test function (-+14.8) 1 and compute

(14.53)

(14.54)

(14.55)

(14.56 )

/ 1 ) (1 \ r o 1- r~-\ .6.j;j' 1 = j;j..6.1/ = 471" Jo dr r
2;.6.1 = 471" Jo r.6.ldr,

(14.57)
where overline implies the average over directions (over Band <.p). Since
(-+14.9) f is spherically symmetric. we have tif = r-1d2(rf)/dr2

(-+2D.IO). Hence.

( 1) ('X ~ - -::f 71
ti lXT·1 = 471" J

o
dr2 r Idr = 471"[r1 + No = -471" f(O).
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14.21 Integral of generalized functions. A ~eneralized function
F is an integral of f. if F' = f. That is, (F, ¢) = -(t, ~). where
~' = ¢ E V.21S Just as the ordinary calculus. we have a
Theorem. The integral of a generalized function is unique up to an
additive constant. 0
In summary. all the ordinary calculus rules survive.

Discussion.
The following integrals are sometimes useful (-32C also):

lui = .!. JOC 1 - c~s ku dk, (14.59)
1i -0(: k

1i6(:r) ± iP.!. = 1x
e±i:r~·d:r. (14.60)

.T

1i 1x
sin a:r sin b»d"2 min(a. b) = :2 x, (14.61)

o :r

14.22 Convolution. The convolution p»q of two generalized functions
p and q is defined as

(p * q.f)~ Jdx Jdyp(x)q(y)j(x + y). (14.62)

We use the followingnotation as well which is consistent with the above
formula.

p * q(x) =Jp(y)q(x - y)dy. (14.63 )

Notice that * is commutative. that is. p * q = q * p. and associative.
that is. ql*(q2*q3) = (ql*q2 )*q3' Therefore. we may define ql*q2*Q3*' . '.

Exercise.
Compute 61 * I.TI. See 14.23(2).

14.23 Example.
(1) 6 *q = q. That is. the delta function serves as the unit element for
*-product.
(2) 6'*q =ql. More generally. 6(n)*q = q(Tl). For example, (~6)*q = ~q.

(3) (p *q)' =pi *q =p * c/. This can be demonstrated easily with the
aid of (2) and associativity of *-product.

:21~There is a technical difficulty in this definition. since 4i may not be in 'D. This
problem can be overcome. See. for example. D. H. Griffel. Applied Functional
Analysis (Ellis Harwood LTD. 1981). p. 38 Theorem 2.2.
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'"
(4) The solution to Poisson's equation (-1.2)

l::t.¢ = _f!.. with ¢ - 0 (lxl - 00)
£0

(14.64)

is given by p * (1/41Tfolx/) (-14.20). This is an implementation of
Green's idea (-1.8).
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