
13 Quasilinear First Order PDE

Quasilinear first order PDE has become increasingly impor­
tant in recent years in physics in conjunction to renormal­
ization group theory. Subsection A discusses how to solve
general quasilinear first order PDE analytically in terms
of characteristics. In Subsection B, as an application, we
discuss homogeneous functions that are important in sta­
tistical mechanics and mechanics. In the last subsection C,
the method outlined in A is applied to constant coefficient
linear PDE including wave and diffusion equations.

Key words: quasilinearity. characteristic equation. char­
acteristic curve. (generalized) homogeneous function

Summary:
(1) Quasilinear first order PDE can be solved with the aid of a system
of ODE called characteristic equations. which can be written down eas­
ily (13A.4).
(2) Homogeneous functions (13B.1). their derivatives (13B.3) and the
PDE they obey (13B.2) must be clearly understood.
(3) Constant coefficient cases may be solved by several standard tricks
(13C.3-5 ).

13.A General Theory

13A.l Quasilinear first order PDE. Let Ii (i = 1. .... n) and 9 be
continuous functions of Xl,' ..• Xn and u.

(13.1)

is called a quasilinear first order partial differential equation. It is called
linear. because it is a linear combination of partial derivatives. It is
called 'quasilinear'. because Ii and 9 are allowed to depend on u. It is
clearly nonlinear in the physicists' sense, if Ii depends on u.

13A.2 Typical example. Suppose a flow field (i.e.• the velocity field
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v) of an incompressible fluid is given. The continuity equation (the
mass conservation) reads (--.alE.5)

op di d- =- zv pv =-v . gra p.
8t

(13.2)

(13.3)

This is a typical quasilinear first order PDE. From its meaning, if
pt=o(r) = j(r). then p(t.r) = j(r(t)). where r(t) is the particle tra­
jectory starting from r at t = 0; that is, the solution to

dr
-=V
dt

with the initial condition r(O) = r. This is an example of the charac­
teristic curve in the next entry.

(13.4)

13A.3 Two variable case. Consider

- az oz
!(x.y.z)""i) + g(x.y.z)71 = h(x.y.z).

ux uy

where f. 9 and h are well-behaved functions'I" of x. y and z: To solve
the equation is to find a relation among x. y and z so that (13.4) is true.
Vve wish to find a 2-surface S given by z = H(x. y) on which (13.4)
holds. Suppose (x. y. z) and (x + dx. y + dy. z + dz) are both on this
surface. Then

(13.5)(~~ .~~. -1) .(dx. dy. dz) = O.
i.e .. n = (azjax. azlay. -1) is a normal vector of the surface S. (13.4)
implies that n and the vector (f. g. h) are orthogonal. That is, to solve
(13.4) is to determine a surface z =H(x.y) whose tangent vectors are
(f. g. h). The equation of a curve whose tangent is (f, g. h) is given by
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196·Well·behayed' means that the relevant quantities are with sufficiently good
properties. say smoothness. to allow us to ignore inessential technical details,

~.-

t. " ".f.frfYIfneof.SIA r: rrf;........ (J.X-

by Gcc,/C;;,) =-0

(13.7)

(13.6)

This is called the characteristic differential equation for (13.4) (cf. (13.3)).
The solutions to (13.6) are called characteristic curves.

In the present case (13.6) is actually two ODE so that the general
solution to (13.6) is given by two equations



where Cl and C2 are integration constants. These equations describe
surfaces. so their intersection is generically a curve we are looking for.
It can be parametrized by these two parameters Cl and C2' If we change
Cl and C2. the curve moves in space. If there is a functional relation
between Cl and C2, then changing, say, Cl (C2 is slaved to cd produces
a surface. Hence the general formula for the surface whose tangent
vectors are given by (f, q, h) is given by

(13.8)

where G is a (well-behaved) function which must be determined by
auxiliary conditions. This is the general solution we have been looking
for.

13A.4 How to solve quasilinear first ODE: method of char­
acteristic equation. The characteristic equation for (13.1) is

(13.9)

Solving this (actually n ordinary differential equations). we get n so­
lutions corresponding to (13.7) (any convenient combinations can be
chosen)

Fi ( X l . X 2 . · · · .xn.'u) = Ci (i = 1.2.···.n).

from which we can get the general solution to (13.1) as

(13.10)

(13.11)

where G is a well-behaved function.
Historically. the method (and consequently the relation between

the PDE and the ODE) was stated for the first time by Leibniz in his
letter to l'Hospital in November. 1695.19;

13A.5 Homogeneous case. If 9 = a in (13.1), then du/g = du/O
in (13.9) is interpreted as u = canst. That is, one of the equations in
(13.10) is u = const. In this case the general solution can be written as

(13.12)

where F1, ' " ,Fn - 1 are the remaining n - 1 relations of (13.10).

Discussion. [Complete integral],

197 K Okamoto. Butsuri. Jan, 1996.
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A solution ofa first orderPDE is called a complete integral. if it has the samenum­
ber of arbitrary constants as the number of independent variables.P" If we have
such a solution. we can make a solution which is dependent on a single arbitrary
function u: as follows: Let an =w(a}," . I an-I). and construct the envelope surface
of u(:t. QI.· .. ,an-I. U'(al,'" ,an-d): that is, we make the following equations:

(13.13)

(13.14)

(13.15)

From these equations we solve n - 1 parameters as a function of e. Then put these
solutions into u, This is the desired solution. However. there is NO guarantee that
the method can exhaust all the solutions constructed by the characteristic curve
method.
(2) For example.

11 = ax + by + V1- a2 - b2 ;z + C

is a complete integral of (grad u)2 = 1.

13A.6 Examples.
(1) For (13.2). the characteristic equation reads

dt dx dy dz dp
-:=-:=-:=-:=-
1 Vx vy V;: 0

(13.16)

(13.17)

(13.18)

(13.19)

with 0 =a/(a2 + b2
) and (3 == b/(a2 + b2

) .

(3)

or (13.3) and dp == 0 (-13A.5). Hence. p(t.r) == f(r(t)) in 13A.2 is
justified.
(2 )

of of
(hx - ay) ox + (ax + by - 1)oy = O.

The characteristic equation (-13A.4) is

dx df
bx - ay - ax + by - 1 - O·

Solving this (-11B.4). the general solution is given by (cf. 13A.5)

( [ ( )2] )b y-f3 1 y-f3
f(x. y) == G ~ arctan x _ 0 - '2 log 1 + x _ 0 -log(x - 0)

(13.20)

of of
- - - = (x - y)f.ax oy

(13.21)

198:\lore precisely. the matrix 82u/8%,8
0 ) must be non-singular. where u{xj.aj) is

a complete solution.
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Its general solution is given by

Exercise.
(A) Solve the following quasilinear first order PDE.
(1)

(
2 2 2 8:; 8:;

11 +;; - x )8x - 2xy 8y + 2xz =O.

(2)
8;; 8:;

(b;; - ey) 8x + (ex - a.::) 8y = ay - bx,

[L~ ~ (E1I'2 _ )!-- _u y~] _
8L + 11'2 2 U Bu + (211')2- 8JV f - o.

(4) Demonstrate that the solution to

8u 8u
- y-+3'- =0

83' 8y

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

is rotationary symmetric.
(E) Find the solution of ;;(8:;/8.r) + 8.::/8y = 1 passing through the curves 11 = 2:;
and .r = :;2.

(e) Solve

(13.2;)

and

(13.28)

Find the particular solution to the above equations going through 3' = Y = z,

13.B Homogeneous Functions

13B.l Homogeneous function of degree p. Let u be a well behaved
real-valued function defined 011 a region in R", If

(13.29)

199This is the renormalization group equation for the mean square end-to-end
distance of a self-avoiding walk calculated by the e-expansion method. What do
you expect to happen in the S ...... oc limit? Here. S is the number of steps.
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(13.30)

for any real >.. u is called a homogeneous function of degree p, where
p can be any real number. Since>. can be any number, >. = xII is
admissible. for example. This implies that a homogeneous function of
degree p can be rewritten, for example, as

_1> (X2 Xn )
U(Xl'" .• x n ) = ;r,-I! -,"', - .

Xl Xl

Discussion.
More generally. a functional f (r) is called a homogeneous function, if

f(Ar) = g(A)J(r).

where 9 is a function of A only. Show that

g(Ajt} =g(A)g(p).

(13.31)

(13.32)

(13.33)

If 9 is continuous at a point. then the following form is the only nontrivial solution
to this functional equation: g(x) =x p • Its proof is not easy.

13B.2 Theorem. A necessary and sufficient condition for u to be
a once-differentiable homogeneous function of degree p is

n ou
LXi- =pu.
i=l OXi

[Demo] Xecessiry follows easily from the chain rule. To prove sufficiency. construct
the general solution of (13.33) (-+13A.4) and explicitly demonstrate that it is in­
deed homogeneous of degree p, Actually. we can easily get the form like (13.30).

13B.3 Theorem. Let 1£ be a differentiable homogeneous function of
degree pER. Then. for any Xi. OUjfJXi is a homogeneous function of
degree p - 1. 0
This follows trivially from the definition of homogeneous functions.

13B.4 Example from thermodynamics. Extensive quantities in
thermodynamics such as the Gibbs free energy. magnetization, entropy
are homogeneous functions of degree 1 of the masses of the constituents
(chemical species) of the system. 13B.3 implies that intensive quanti­
ties such as temperature, chemical potential. pressure are homogeneous
functions of degree O. From. for example. dE = TdS - ~dV + ud.N
E =T S - pV + J.lN follows according to Theorem 13B.2. 00

Exercise.
Let s be the extensive quantity X per unit mass. Show

de = Tds - pdi: + udn, (13.34)

200The best thermodynamics textbook (introductory) for physicists is: H. B.
Callen. Thermodyf'wmics (Wiley. 1960).
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l3B.S Kepler's third law. Consider an n-body conservative system
with the potential energy given by U(rl,"',r2) which is a homoge­
neous function of degree p. This implies that the force is a homoge­
neous (vector-valued) function of degree p - 1 (-l3B.3). Newton's
equation of motion

(13.35)

where m, is the math of the z-th body. has the following scaling prop­
erty: Scaling r, - Ari and t - j-tt gives

(13.36)

Therefore. if It =),,1-p/2. the equation of motion is invariant. For grav­
ity. p = -1. so that this implies Kepler's third law (T 2 =a3).201

13B.6 Generalized homogeneous function. If a function f sat­
isfies

(13.37)

for any real ,\ and for some real numbers a. band p, f is called a
qeneralized homogeneous function. This is important in understanding
critical phenomena. For example. the static scaling hypothesis (due
to Widom) asserts that the Helmholtz free energy P(T - Te• H) of
a magnet. where T; is the critical temperature. and H the magnetic
field. is a generalized homogeneous function for 1" = IT - Tel ~ 0 and
H:::::: 0:202

(13.38)

where a. f3 and 6 are called critical exponents. These exponents and
the functional form of f are universal for a class of materials.203

201 For other examples. see J. ~1. Smith. Mathematicalldeas in Biology (Cambridge
t"P).

202See• for example. H. E. Stanley. Introduction to Phase Transition and Critical
Phenomena (Oxford tTp. 1971). Chapter 11. 12 and 15.

2035ee X. Goldenfeld. Lectures on Phase Transitions and the Renormalization
Group (Addison Wesley. 1992).
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13.C Application to Constant Coefficient Linear
PDE

13C.l Constant coefficient linear PDE. Introduce the notation
a; == a/ax;. and write collectively {ad. Let P( {xd) be a constant
coefficient polynomial.

P( {ai})u = g. (13.39)

where 9 is a function of {Xi}. is called a constant coefficient linear par­
tial differential equation. The general solution to (13.39) is the sum
of the general solution204 to the homogeneous problem Pu = 0 and a
solution for Pu =g.

13C.2 Theorem [Malgrange-Ehrenpreis]. If 9 is ex in a region
D c tr, then (13.39) has a ex solution in D. 0 205

13C.3 Factorization 'theorem'. If P is factorized into two mutually
prime factors as P = PIP2• then the general solution to Pu = a is the
sum of the general solutions to PI u =a and P2'U = O. 0 206

This should be obvious from P(h + h) =P2PdI + PIP2f2. Here
we assume the function f is sufficiently smooth.

Since P is a polynomial of many variables. there is no guarantee
that we can factorize this into distinct first order factors of the form
L aJ);. If we can. we can exploit our knowledge of first order linear
PDE (---t 13A.4). If we cannot factorize P into first order operators.
there is no general way to solve the PDE (however, see 13C.8).

From now on we study only two independent variable cases.

13C.4 How to solve inhomogeneous equation. As is stated in
13C.l we have only to find one solution to Pu = 9 by whatever means
we can use. Useful observations are:
(1) If P =PIP2. then Pti =9 can be solved step by step. First find UI
such that PI 'UI = g. and then solve P2u = UI'
(2) P( ax. ay)eQx+byu = eQx+byP( ax+a. ay+b)u. [This can easily be seen
from. e.g.. a;eQx+byu = a;-leQx+by(ax + a)u.]

204By "general solution" we mean a solution containing m arbitrary functions for
a moth order PDE in the linear case.

205For a proof. see G. B. Folland. Introduction to Partial Differential Equation,
p84-i.

206practically. the ·theorem· is very useful as we see below, but precisely speaking,
the theorem cannot be true. because the smoothness of the solution to a lower order
PDE need not be as large as the original higher order PDE. Hence. the 'theorem'
is useful only when we look for sufficiently smooth solutions.
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13C.5 Lemma. The general solution to

(a[);c + b[)y + c)"u = 0

is
11-1

U = e':"!" L X i 4>i(bx - ay),
;=0

(13.40)

(13.41)

where 4>i are arbitrary functions. (If a = 0, then replace e-cz /
a with

e- cy / b and Xi with yi). 0
To demonstrate this use (1) and (2) of 13C.4. Also it is useful

to remember the following standard trick. Let L be a linear first order
differential operator and we wish to solve L2u = O. If we know the
solution to Lv = O. then introduce w as u = wv. The equation for 'w is
usually easier to solve.

13C.6 Examples, Find the general solutions (Review 2B.4).
(1) I-space wave equation:

(13.42)

For this equation

(13.43)

Hence. the factorization theorem l3C.3 implies that the general solu­
tion to the wave equation is the sum of the general solution to (Ot ­
cox)u = 0 and (Ot + c[):,r)u = O. These can be solved easily by the
standard method l3A.4. so that the general solution to (13.42) is

u(t.x) = F(x - ct) + G(x + ct). (13.44)

(13.45)

where F and G are arbitrary twice differentiable functions.P" That
is. the general solution is a superposition of right and left propagating
waves as we have already seen in 2B.2.
(2) 2-space Laplace equation:

02,u 02u
ox2 + oy2 = O.

This is the case with c = i of (13.42). Hence, its general solution can
be written as F(x + iy) +G(x - iy). We are looking for real solutions.

20TSee the footnote of l3C.3.
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If F( z) + G(z) is real. then it must be a real part of some analytic
function. 208 Hence. the general solution is a real part of any analytic
function (-5.6).
(3)

EJ2u +2 EJ2u _ EJu _ 2EJu :::: O.
8xf:Jy 8y2 8x f:Jy

Its general solution reads

u(x, y) :::: F(2x - y) + eYG(x),

where F and G are twice differentiable functions.

(13.46)

(13.47)

13C.7 Examples of inhomogeneous equations. Find general so­
lutions:
(1)

f:J2 u f:J2 u

8 ? + ~ ? :::: x . (13.48)
x- uy-

Use 13C.4( 1). or by inspection u :::: x3 j6 is a solution. Thus the general
solution to this equation reads (-13C.6)

(2)

x3

u(x. y) :::: F(x + iy) + G(x - iy) + 6' (13.49)

f:J2 u f:J2·u
8

'J - ~ ?:::: sin(x+at) (a #- ±1). (13.50)
t- ox-

We use 13C.4(2). Use the linearity of the equation and the fact that
Imei(:r+at):::: sin(x+at). That is. get a solution to (f:J;-f:J;Ju:::: ei(x+at):

U :::: 1 ei(:r+at)
2i(1 - a2 )

(13.51)

(13.52)

Its imaginary part is the desired solution. Hence. the general solution
to (13.50) is (-13C.6(1))

u:::: F(x - t) + G(x + t) + 2 1 sin(x + at).
a -1

If a :::: ±l (resonant case). then introduce v as u :::: ei(x+at)v. and
make the equation for v. This is a standard method to solve resonant

2oe<:\otice first that G(z) may be considered as the complex conjugate of some
analytic function H(:). Hence. F(=) + H(:) is real. We know F(z) + F(z) is also
real for all z, so that F(=) - H(:;) must be real for all c. However. such an analytic
function must be a real constant. Hence. we may identify Hand F.
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(13.53)

problems.P"

Exercise.
(1) Find the solution of z(8::/{)x) +{)::/{)y = 1 passing through the curves y = 2::
and x = ::2.
(2) Consider the following telegrapher's equation:

{)2u 82 U 8u- _c2 _ + (0 +b)- +abu =0,
at2 8x2 8t

where a and b are constants. The standard way to remove the first order derivative
term is to introduce

(13.54)

\Ye han'
{)?r (a_b)2 82

t·- - -- - c2 _ =O. (13.55)
8fl 2 8x?

If a = b. then the cable can propagate a wave without distorting the wave form.
although the signal strength decays.

13C.8 Application to diffusion equation. For a diffusion equa­
tion in I-space. the differential operator P = (Ot - Do;), so that we
cannot factorize this into first order factors. However, if P( a, b) = O.
then exp(at + bx) is a solution. Hence. for example

(13.56)

is a solution. Since the equation is linear. if the integral

(13.57)

converges. then this turns out to be the general solution. where f is an
appropriate function of k. For example. if f is in Lz (---+20.5(2)). the
integral converges. and u( x. t) is at least meaningful as a weak solution
(a solution in the generalized function sense ---+14).

13C.4(2) is also useful to find a special solution to inhomogeneous
diffusion equations. For example, consider

o;u - OtU =sin(ax + bt).

U = a4 : b2 [_aZ sin(ax +bt) + bcos(ax + bt)]

is a solution.

209This is the general trick we considered in 13C.5.
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