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12 Constant Coefficient Linear ODE

A practical method is outlined to solve constant coefficient
linear ODE explicitly (constructively). A method to ana­
lyze the stability of a fixed point is also explained. A useful
theorem to locate eigenvalues of a matrix is Gershgorin's
theorem.

Key words: Exponential of matrix. stability. hyperbolic
fixed point. Hartman-Grobman theorem. Gershgorin's the­
orem.

Summary
(1) Practice calculating e.'4. when A is not diagonalizable (12.2, 12.5).
(2) Linear stability analysis: the stability around a hyperbolic fixed
point is completely determined by the linearized equation (12.8-10).
(3) There is a useful theorem to restrict the locations of eigenvalues of a
(complex) square matrix on the complex plane (Gershgorins theorem)
(12.10).

12.1 The general form. n-th order ODE with constant coefficients
can always be written in the form (-11A.4-6)

du
dx = Au.

where A is a n x n constant matrix. and u consists of u. UI =dujdx. U2 =
d2ujdx2..... Un-I == dn-Iujdx n

-
I. We have only to solve the con­

stant coefficient first order equation (12.1). For non-constant coefficient
cases. see 24.

12.2 Exponential function of matrix. Consider the following for­
mal series

1 A 2 2 1 A 3 3 1 An n! (t ) = l + At + - t +- t + ... +- t + ...
2! 3! n! •

(12.2)

where 1 is the n x n unit matrix. If this series is truncated at some
finite order. the result should be an n x n matrix. We say the series
converges if ! (t) applied to any finite vector v converges.ISS We define
the norm of the matrix by

IIAII == sup IAvl/lvl·
v

(12.3)

185This is equivalent to the componentwise convergence of the matrix series.
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(12.5)

We can obtain
Ilf(t)11 s exp(IIAllt). (12.4)

Hence. if the components of A are finite. then the series is absolutely
convergent and consequently f (t) is well defined.186 The series is also
uniformly (in t) convergent. Therefore.s we may termwisely differenti­
ate it to get

df(t) = Af(t).
dt

Hence. f(t) is written as f(t) = et
•
4 •

12.3 General solution to (12.1). The general solution to (12.1)
is

u(t) = etA. u o. (12.6)

where Uo is a constant n-vector (the initial condition vector). For an or­
thonormal basis {€l" .. ,en}. {e··!t€l.··· . e·4t €n} is a fundamental sys­
tem of solutions of (12.1). Since eA.t is nonsingular for any A, the
dimension of the space spanned by the initial data and that of the solu­
tions at any time t are identical. That is. u( 0) and u( t) are one-to-one
correspondent. Theoretically. the formal solution may be enough. but
we must be able to calculate the matrix etA. explicitly.

12.4 Diagonalizable cases. Since our equation is linear. complex­
ificaiion is always helpful. That is, we interpret the equation to be on
en instead of R", and take the real part of the solution to obtain the
real solution to the original problem. If the matrix A is normal (i.e..
A- A = AA-). then A is diagonalizable by a similarity transformation.l'"
In this case there is a unitary matrix U such that U- AU = A. which is
a diagonal matrix ),1 EB),2 EB··· EB ),n' It is easy to demonstrate (return
to the definitioin 12.2) that

(12.7)

Therefore. the general solution188 to (12.1) reads

(12.8)

where c, are arbitrary constants and Pi is an eigenvector belonging
to the eigenvalue ),i (here all the eigenvalues are multiply taken into

186lfwe interpret Ivl to be the ordinary Euclidean length. then the norm defined
here is equal to the maximum of the square root of the eigenvalues of A-A.

18iThis is only true in general when the "ector space is considered on the field C.
This is why we need complexification.

188Here. :general' means that a solution from any initial data can be obtained.
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(12.9)

account according to their multiplicity). This should be obvious from
(12.6). (12.7) and the structure ofthe unitary matrix U = (PIl P2~' .. ~ Pn)'
if we interpret Pi to be column vectors.
If the matrix cannot be diagonalized by a similarity transformation,
then polynomials of t appears in place of constants. All the cases in­
cluding this nondiagonalizable case can be solved constructivelyI89 as
follows:

12.5 Practical procedure.
(A) In the above the most general approach is described to solve (12.1).
To solve a constant coefficient n-th order linear ODE

dn,u dn-Iu du
a -+a _1--+···+al-+aOu=O.

n di" n dt n- I dt

we need not consider the general matrix. but a very special form which
can be guessed from 11A.5. Let its characteristic roots. i.e .. the roots
of

(12.10)

be AI." .. Ar with the multiplicity mI" ... m.: respectively. Then. the
general solution for (12.9) is given by a linear combination of

A set of solutions which can span the totality of the solution space of
an ODE is called its fundamental system of solutions.
(B) A general procedure to compute et .4 is as follows:
(1) Find the characteristic polynomial f(x) =det(xI - A). and eigen­
values (the zeros of f). Let

(2) Compute the partial fraction expansion

1 gl(X) + gz(x) + ... + gdx) .
f(x) - (x - AI)!JI (x - A2)!J2 (x - Ak)/lk

(3) Compute

(12.12)

(12.13)

fj(x);::.f(x)!(x - Aj)!JJ. (12.14)

Then make the following matrix (this is a projection operator -+20.19)

(12.15)

189'Constructiw' means that an explicit procedure to obtain a solution is given.
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(12.16)

(4) eAt is given by

eAt = eAt(P1 + P2 +... +Pk).

Each term can be computed as follows:

eAtP
j

_ e>"jfe(A.->"jI)tP
j

, (12.17)
Vj-l t/"

- e>'Jt L -t(A - AjI)mPj • (12.18)
m=om.

In this calculation. we need not actually know what Vj are. Simply cal­
culate (12.18) until one gets the vanishing factor. Notice that Vj does
not exceed the multiplicity J.Lj .190

A theoretical explanation why this procedure works is given in Ap­
pendix a12.

Exercise.
(A) Solve the following linear ODEs:
(I )

du = (~ ~ ~) u.
dt 0 0 2

(2)

du __ (~ ~ ~ ~)
dt 0 0 1 1 u.

000 1

(3)

(12.19)

(12.20)

~~ = G~2 ~5) u. (12.21)

In this case the matrix can be diagonalized. but still the general method is useful.
(B) Construct the projection operators for eigenspaces of the following matrices

(12.22)

12.6 Inhomogeneous case. The general solution to the following
inhomogeneous equation

du
-=Au+!dx

(12.23)

190J.1j is the usual multiplicity (=algebraic multiplicity) of the eigenvalue Aj. The
number of eigenvectors (i.e.. the dimension of the eigenspace for Aj) need not be
the same as lij' This dimension is the number IIj.
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is given by (use the method of variation of constants -11.B.5, I1B.13)

(12.24)

This has the usual form (-11B.13): sum of the general solution to
the homogeneous equation (the first term) and a special solution for
the inhomogeneous equation (the second term).

12.7 Stability question of a fixed point. Suppose we have a vector
ODE

dx
di=v(2:) (12.25)

for which x ::::: 0 is a fixed point (i.e.. v(O) = 0). An important ques­
tion is whether this solution is stable or not. That is. if we perturb
the solution slightly 0 - 6x. does 16xl grow in time? If yes. then the
solution cannot be stable. On the other hand. if this quantity goes to
zero eventually for any small displacement. we may conclude that the
fixed point is stable. The following theorem is a fundamental theorem
(stated for the present case):

12.8 Theorem [Hartman-Grobman]. If 0 is a hyperbolic fixed point.
that is. dv / da: at x =0 does not have any pure imaginary eigenvalue.
then for sufficiently small neighborhood of 0 the orbits of (12.25) and
those of

dx- = Ax. (12.26)
dt

where A =dvIdxlx=o. can be related one to one.191 In particular. the
stability (or instability) of 0 for (12.25) is equivalent to the stability (or
instability) of 0 for (12.26).

12.9 Stability analysis of fixed point. 12.8 tells us that the sta­
bility of the fixed point of (12.25) is completely determined by the
eigenvalues of the derivative dv Idx evaluated at the fixed point, (if the
fixed point is hyperbolic: if not. we must pay attention to the higher
order terms: that is. linearization is not enough). If there is no eigen­
value whose real part is non-negative. then the fixed point is linearly
stable. Thus the linear stability problem boils down to the eigenvalue
problem. Sometimes the following theorem 12.10 is useful, which can
locate the eigenvalues on the complex plain.

Discussion[Logical sloppiness].

191 More precisely. the orbits are homeomorphic. That is. there is a continuous
map which maps any orbit of (12.25) to that of (12.26) one to one continuously ill

both ways.
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Physicists often argue as follows. "Linearize the equation around the point of inter­
est and make an equation for the small displacement b». Since we find it shrinks to
zero. we conclude that the point is stable." This argument is logically flawed. The
lecturer is afraid that many working theoretical physicists do not feel any special
problem in this argument until they are told that it does not show anything. Think.
There are many such arguments in physics. and in most cases the conclusions are
right. Can we empirically. then, ignore logic?

Exercise.
(1) Find the fixed point (equilibrium point) of

dx
= x - xy.

dt
dy

= -y +xy.
dt

(12.2i)

(12.28)

(12.32)

Show that the fixed point is not hyperbolic. Change the local coordinates around
the fixed point to the polar coordinates. and demonstrate that the point is actually
stable (i.e .. the perturbation does not grow indefinitely).
(2) Study the stability of the origin pf the following Lorenz equation.ll12

:i: = -lO(x - y). (12.29)

iJ = rx-y-x:;. (12.30)
[tJ!-I 8I \

(12.31)- = -3=+ X!J.

Here r is a positive bifurcation parameter which controls the behavior of t he system.
(3) Demonstrate that .r = 0 is a stable solution (stable fixed point) of

dx
dt = Ax.

where

(

- 1
1/4

A = 1/4
1/4

o
-1/2

o
1/3

1/2
1/5
-1
4

-~3)
1/2 .
-5

(l2.33)

12.10 Gershgorin's theorem. Let A = Matr{aij} be an n x n
complex matrix. Its eigenvalues are all in the union D = Ui:::::l Ci~ where
C, are discs called Gershgorin's disks:

c, = {z E Cllz - aiil :5 2: laijl}
j:/:i

(12.34)

for i = 1. .... n (here no summation convention). The number of eigen­
values contained in each connected component of D is equal to the

1925ee. for example. E. A. Jackson. Perspective of Nonlinear Dynamics, \'01.2 Sec­

tions i.3-5.
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(12.3i)

number of disks making each connected component. 0
[Demo] Let>' be an eigenvalue of A and II: = (Xl.··· ,xn)T a corresponding eigen­
vector. \\'e have

n

LaijXj = >'Xi, (i=l,"·,n). (12.35)
j=l

Since II: '" O. there must be Xk such that IXkl =maxi IXil '" O. For i = k (12.35)
reads

(>' - akk)xk = I>kjXj (12.36)
j:¢k

In other words.

'" IXjl '"I>' - akkl :s ~ lakjl-IxI :s~ IUkjl = r». .
j:¢k k j:¢k

This implies that>' E Ck' which is obviously in D.
To prove the last part. we note the fact that the eigenvalues are continuously

dependent on the matrix components. Let us split A into its diagonal part AD and
the off-diagonal part 040: A = AD + Ao. We make A.(t) = AD + tAo. The second
part of the theorem is trivially true for 04(0). The Gershgorin disks Ci(t) for o4(t)
depends on t continuously. The eigenvalues of A(t) is also continuous functions of
t, Hence. for any t (particularly for t = 1) the theorem must be true.

Discussion.
Study the trajectories of the eigenvalues of the following matrix o4(t) for t E [0.1],
and discuss their relation with the Gershgorin disks:193

o

(
0 3t)

A(t) = -it 8 . (12.38)

Notice that the eigenvalues do not move under the similarity transfor­
mation. but the matrix elements are altered. so that the estimate can
be made better or worse with an application of a similarity transfor­
mation before applying the theorem. See the next example.

12.11 Application of Gershgorin's tbeorem.l'" Find the location
of the eigenvalues of A.

A = 0;n· (12.39)

If we apply the similarity transformation A --+ D-lAD, where

D = Cf ~ ~). (12.40)

193Iri 1995
194From :'1. Iri, Linear Algebra II (Iwanami, 1994) p218. This is the best linear

algebra textbook currently available. but in Japanese.
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then the eigenvalue close to 1 can be located within the order of £2

instead of £. This demonstrates the usefulness of similarity transfer­
mations applied before the estimation. It is not hard to find similar
transformations allowing us to estimate the other eigenvalues with the
same order of accuracy.
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APPENDIX a12 Decomposition of eAt

A theoretical basis of the practical method 12.5 is outlined here. Conventionally.
the Jordan canonical form is used to compute eA.t, but to make the Jordan canonical
form may not be very easy.195
(1) Let f(.1') be the characteristic polynomial: f(x) = det(xI- A). If

(12.41)

.A j is an eigenvalue and IJ j is called its multiplicity.
(2) The lowest order polynomial ;p(x) satisfying <;(A) = 0 is called the minimal
polynomial of.4. .; must divide f and has the following form:

(12.42 )

o < Vj :5 I' i: A necessary and sufficient condition for A to be diagonalizable is
Vj = 1 for all j.
(3) Theorem [Frobenius]. Let g(x) be the largest (highest order) common divisor
of all the (n - l j-subdeterminant minors of xl - A. Then the minimal polynomial
.; is given by .; = fig. where f is the characteristic polynomial.
(4) ll"j::: ker().,jI - .4) (i.e.. all the vectors satisfying Ap = .Ajp) is called the
eigenspace of A belonging to Aj. ll'j :::ker(>\jI _.4)VJ (i.e.. all the vectors satisfying
(Aj! - A)"Jp =0) is called the generalized eigenspace of A. belonging to .Aj. If A is
diagonalizable, then Wj = ll'j for all i.
(.:'i) ll'1 11'2 7 ... 7 TI'k = en. That is. the vector space on which A is acting is
decomposed into the direct sum of generalized eigenspaces.
(6) The projection operator P, for the generalized eigenspace ll'j can be constructed
as follows: Let f be the characteristic polynomial. Compute the partial fraction
expansion

_1_ = g1 (.r) + g2(X) + ... + gk(X)
f(.r) (.r-).,IlIJl (;1'-.A2)1'2 (X-Ak)l'k'

Here 9j (:r) is a polynomial of order not larger than Jlj - 1. Then

where

(12.43 )

(12.44)

!i(x):::f(x)/(x->'j)"J. (12.45)

(i) (.4 - .AjI)qPj =0 for q 2: Vj,
(8) Xow we can decompose eAt as follows: eAt (PI + Pz + ... + Pk). Here

e·4tPj = e).jteCA-AJIltPj.

"J-1 '"

= eAJt L ~(.4 - AjI)"'Pj'
m=O m.

where we have used (i) after expanding the exponential function.

(12.46)

(12.4i)

195For this approach see ~1. W. Hirsch and S. Smale. Differential Equations. Dy­
namical Systems. and Linear Algebra (Academic Press 19i4).
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