
11 Ordinary Differential Equation: Gen­
eral

The general theory of ordinary differential equations (ODE)
is outlined with precise statements. In the second half of
the section, elementary analytical techniques to solve ODE
are summarized for convenience.

Key words: general solution, particular solution, singular
solution. normal form. Cauchy-Peano's theorem. Lipshitz
condition. Cauchy-Lipshitz' theorem, separation of variables,
perfect differential equation. integrating factor. Bernoulli
equation. Riccati equation, Lagrange's method.

Summary
(1) Any (normal form) ODE can be converted to a first order vector
ODE (11A.4-6).
(2) For simple first order ODE. look up representative examples first.
Some representative examples are in lIB.
(3) For linear ODE. although a general theory will be given in the
following sections (12. 24). simple second order constant coefficient
equations can be solved without any difficulty (1IB.II-I3).

Il.A General Theory

l1A.l Practical advice. See. for example. Schaum's outline series
Differential Equations by R. Bronson for elementary methods and prac­
tice. To learn the theoretical side. V. 1. Arnold, Ordinary differential
equations (MIT Press 1973: there is a new version from Springer) is
highly recommended. E. A. Coddington and N. Levinson, Theory of
Ordinary Differential Equations. (McGraw-Hill. 1955) is a standard
classic reference. I cannot recommend D. Zwillinger, Handbook of Dif­
ferential Equations (Academic Press. 1989). This book may be useful,
but the organization should be more intelligent.

(11.1)J' dy + 2y = sin r .
dx

Exercise. If you do not have any problem with the following ODE, then you
can skip llB.
Find the general solutions of the following ODE.
(1) (-UB.S)
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(2) (-llB.6)

dy +! = x 2y3.
dx x

(3) (-llB.7. y =x is a solution.)

dy 2
dx =Y - xy + 1.

(4) (-llB.IO-13)

(11.2)

(11.3)

(11.4)

IIA.2 Ordinary differential equation. Let y be a n-times differen­
tiable function of x E R. A functional relation

f (z. y(x ). y'(x ). .. . . y(71 ) ( X )) = 0 (11.5 )

among x.y(x). y(x) • . . .. y(Tl)(x) is called an ordinary differential equa­
tion (ODE) for y(x). and n is called its order. where the domain of f
is assumed to be appropriate. Such y(x) that satisfies f =0 is called a
solution to the ODE.

Discussion.
Which is more general (or more powerful as a descriptive means). (normal form-llA.5)
ODE or (normal form) difference equations:

(11.6)

?172

[Hint: look up the following technical terms. suspension. and Poincare section in a
standard dynamical systems textbook.]

I1A.3 General solution, particular solution, singular solution.
The solution y = cp(X.Cl.C2.···.Cn) to f = 0 in 11A.2 which contains
n arbitrary constants Cl' •.•. Cn (which are called integral constants) is
called the general solution of f = O. A solution which can be obtained
from this by specifying the arbitrary constants is called a particular so­
lution. A solution which cannot be obtained as a particular solution is
called a singular solution. For example, the envelope curve173 (general
solutions is a singular solution.

li2This can alway be written in terms of differences ~l(k) == Yk+l - YI" and
higher order differences ~2(k) = Adk + 1) - ~l(k). etc. Therefore, (11.6) may
be considered as an n-th order difference equation. If the equation is linear with
constant coefficients. then there is a general method to solve it (-33 ).

173 The envelop curve of a smooth family of curves {F(x,o:) = O}, where 0: is a
parameter. is a curve tangent to all the members of the family. and is given by the
conditions F(x.a) =0 and lJF(x.o:)jlJa =O.
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Discussion.
(A) Consider the following equation called Clairaut's equ.ation:

dy (dY)y=x-+/ - .
dx dx

(1) Show that its general solution is

Y = Cx + fCC),

(11.7)

(11.8)

where C is a constant. [Hint. Differentiate (11.7) and factor out the second deriva­
tive. See llB.16.]
(2) The envelope curve of the family of lines defined by (11.8) is also a solution of
(11.7). This is a singular solution.
(B) In llA.ll :r :: 0 is a singular solution to (11.26).

llA.4 Normal form. If the highest order derivative of y is explicitly
solved as

y(tl)(x) =F (x. y. y' •... , y(tl-1))

from f = O. we say the ODE is in the normal formy4

(11.9)

llA.5 Normal form ODE is essentially first order. Let Yj _
yU- 1l (j = 1. .... n). Then (11.9) can be rewritten as

dYl
(11.10)= Y2·dx

dY2
(11.11)

dx - Y3·

(11.12)
dYn-l

(11.13)
dx - Yn'

dYn
Fi», Y1' Y2·· .. , Ytl). (11.14)

dx -
That is. (11.9) has been converted into a first order ODE for a vector
y = (Yl. Y2· .... Ytl f. Any normal form n- th order scalar 0 DE can be
converted into the n-vector first order ODE of the form

(11.15)

Any solution y(x) can be understood as an orbit parametrize by 'time'
x in the n-space (= phase space) in which y lives.

li4::\otice that not normal ODE's may haw many pathological phenomena, but
we will not pay any attention to the non-normal form case.
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llA.6 Nonautonomous equation is not special. In (11.9) if F
does not depend on x explicitly, we say the ODE is autonomous. If
not. it is called nonautonomous. Parallelly, if v does not depend on x
explicitly. we say (11.15) is autonomous; otherwise, nonautonomous. If
we introduce one more variable t such that dx / dt = L then the set of
equations in IIA.5 becomes autonomous:

dy
v(x. y),

dt -
dx

i. (11.16)
dt -

Hence. there is no fundamental difference as to the basic theory be­
tween autonomous and nonautonomous cases.irs Thus to understand
ODE. we have only to understand first order autonomous vector ODE.

ItA.7 Initial value problem for first order ODE. To solve

dy- =v(y)
dx

(11.17)

under the condition that y( 0) = Yo is called an initial value problem.
where y(O) is called the initial data. The vector field v defining an ODE
may be considered to be a flow velocity field on an n-space. Hence. the
initial value problem is geometrically a problem to find an orbit passing
through Yo at 'time' x =o.

We summarize the standard theorems in the following. However, the
general idea can be understood intuitively. A point where v = 0 is
called a critical point. Not near a critical point, the essence of the
unique existence of the solution is given by the rectification. That is,

li50f course. the dimension of the phase space is increased by one, and this could
cause a tremendous qualitative difference.
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the flow can be transformed to a constant flow parallel to the first
coordinate (by a one-to-one continuous map =homeomorphism):

(11.18)

This should be ituitively easy to understand through imagining the vec­
tor field being drawn on a rubber sheet. l i G

Discussion [Glass patterns]. An interesting method to make and visualize sim­
ple "ector field is the Glass patterns. Make a random dot pattern more or less
uniformly distributed on a sheet of paper. and make its transparency copy (it could
be slightly scaled. or warped. so generating the points on computer may be advan­
tageous). Then. superpose it on the original. If the displacements of the points are
small. the reader will recognize a clear pattern. because her brain is a good detector
of spatial correlation. The random dot moire patterns are called Glass patterns after
its discoverer 1. Glass.' ii Applications of dynamical systems (= qualitative studies
of differential equations) to cognitive psychology can be found in a recent book. J.
A. Scott Kelso. Dynamic Patterns. the self-orqanization of brain and bekat'ior (MIT
Press. 199.3).

llA.8 Theorem [Cauchy-Peano]. If for (11.17) v is continuous
on a region D C R Il

• then for any Yo E D there is a solution y( z ) of
(11.17) passing through this point whose domain is an open interval
(a. w) (- 00 :S a < w :S (0). 0

llA.9 Lipschitz condition. Let v be a continuous vector function
whose domain is a region D eRn. For any compacr'P set KeD, if
for any Yl and Y2 both in K there is a positive constant LJ{ (which is
usually dependent on K) such that

(11.19)

then v is said to satisfy a Lipschitz condition on D.
If v and dv / dy are both continuous in D; then v satisfies a Lipschitz
condition on D.

G!A5; j?&:.jHrnJ

(~ Kefr,,)

Discussion.
(A) [Holder continuity].
If a function J satisfies

IJ(x) - J(g)/ :5 Llx - glQ (11.20)

1i6Read the introductory part ofthe book review by P. Holmes. Bull. Amer. Math.
Soc. 22. 339 (1990).

m::\ature, 223. 5iS (1960): 1. Glass and R. Perez. Nature 246, 3603 (19i1).
178'Compact' means in finite dimensional space 'closed and bounded' (-A1.25).
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on its domain for constants L and a E (0.1), f is said to be Holder continuous of
order Q. In particular, if a = 1, f is said to be Lipschitz continuous. A C1 function
is Lipschitz continuous due to the mean value theorem.
(B) Cantor set and Cantor function (devil's staircase). Let x E [0,1] be
written as

~an
z = L...J 3n '

n=1

where an E {O. L 2}. The function f is defined as follows:
(a) If a1,' .. ,ar-1 are not 1. but a, =1

1'-1
~ an 1

f(x) = L...J 2n+1 + 2n '
n=l

(b) Otherwise

~ an
f(x) = L...J ?n+1 .

n=l -

That is. f(.r) has the binary expansion 0x/2 ... on/2.
Sketch the function.

lr-------.,

(11.21)

(11.22)

(11.23)

3/4

1/2

1/4

...­...­...-.
o 1/3

.­..:-:..
':"'..

2/3 1

o 1/3
I t

I
I
I
I

I f ~ !
I I '
I I :
I I ,

, HH HH

2/3 1
1 I

Oel//! J rfr;../'y-CPJE:.. (A>1h,.. le1"'

The function increases on the classical Cantor (-17.19) set:179

C == { x =~ ;: Ian E {O. 2}} . (11.24)

(3) The Cantor function is Holder continuous (see (A) above) of order log 2j log 3.
(4) What is the total length of C?
(5) Is C countable or uncountable? Is [O.I)\C countable or uncountable? (-17.18(4),
A1.16).

IIA.I0 Theorem [Cauchy-Lipschitz uniqueness theorem]. For

179?1Iore generally. a perfect (that is. there is no isolated point) nowhere dense set
is called a Cantor set.
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(11.17). if v satisfies a Lipschitz condition on D, then if there is a so­
lution passing through Yo E D, it is unique. 0

Discussion.
(A) Why is the unique existence theorem important? Physicists almost
always ignore the existence theorem and the uniqueness theorem. However, they
are very crucial even from the physics point of view. According to the Newton­
Laplace determinacy (an empitrical fact). the motion of a point mass is completely
determined by its initial position and velocity. Therefore, if the motion obeys a
differential equation at all. it is easy to guess that the equation must be a second
order equation. If we demand that there must be time reversal symmetry. we arrive
at )\ ewtou's equation of motion (without the first order derivativesj.P" Is this guess
really correct? If f is reasonable. yes. This affirmative answer is supplied by the
unique existence theorem.
(B) Even if the Lipshitz condition is not satisfied: If the variables are separable as

dy ny)
dx = X(x)'

(11.25 )

and X and l' are continuous and not zero near (:ro.Yo). then the solution near this
point is unique. However. the condition is important as we see in the next.

l1A.ll Importance of being more than continuous. If the initial
condition is given at the critical point of the vector field (i.e.. where
v = 0) . then the solution need not be unique. However. if the vector
field is differentiable. then uniqueness still holds in this case. Con­
sider for some positive integer n the following equation with the initial
condition x = 0:

dx 1-1/n (11.26)
dt = x .

x == 0 is obviously a solution. but this is not the unique solution (Find
the other). However. if we consider dx/dt = x. then x =0 is the only
solution.

Exercise.
Find all the solutions such that x =0 at t =0 for (11.26).

IIA.12 Continuous dependence on the initial conditions, If
the vector field is Lipschitz continuous (-tI1A.9), then the solution at
time t depends on the initial condition continuously,

l1A.13 Smooth dependence on parameter. If the vector field
is smooth. then the solution at finite time is as smooth as the vector
field. If the vector field is holomorphic (~5.4). then the solution is

l!'oThis is the way Arnold introduces Newton's equation of motion in his book.
Mathematical Methods of Classical Mechanics (Springer. 19i9).
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also holomorphic. Then, we can use perturbation theory to obtain the
solution in powers of the parameter. This was the idea of Poincare.

11.B Elementary Solution Methods

IIB.1 Method of quadrature. To solve an ODE by a finite number
of indefinite integrals is called the method of quadrature. Representa­
tive examples are given in this subsection. In practice, consult any
elementary textbook of ODE or outline series.

dy
dx = p(x)q(y). (11.27)

where p and q are continuous functions. is solvable by the separation
of variables: Let Q(y) be a primitive function of l/q(y) and P that
of p. Then Q(y) = P(x) + C is the general solution, where C is the
integration constant (---+IIA.I0 Discussion (A)).

11B.2 Separation of variables. The first order equation of the fol­
lowing form

Exercise,
(Il Show that

dy
-=!(aJ.'+by+c)
d.T

can be separated with the new dependent variable u =ax + by + c.
(2) Solve

(11.28)

dy
dx =x(.r + y). (11.29)

I1B.3 Perfect differential equation. Consider the first order ODE
of the following form

(11.30)
dy P(x. y)-
dx Q(x.y)'

where Q ;;j:. O. If there is a function <P such that <Px = P and <P y = Q,
then (11.30) is equivalent to

(11.31)

so that <P(x. y) = C. C being the integral constant. is the general solu­
tion.

Exercise.
(A) Show that the separable case (.....1.lB.2) is a special case of perfect diferential
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equations.
(B) Solve the following differential equation:

:r:
(:r: 2 + log y)dx + -dy = O.

y
(11.32)

IIB.3a Integrating factor. Even if P and Q may not have such
a 'potential' q.. P and Q times some common function factor Ii», y)
called integrating factor may have a 'potential' '1J:

d'1J = I Pdx + IQdy. (11.33)

Then '1J = C. C being the integral constant. is the general solution to
(11.30).

It is generally not easy to find an integrating factor. However, we
can easily check whether there is an integrating factor dependent on x
alone or y alone. In such cases we can explicitly construct an integrat­
ing factor.

A necessary and sufficient condition for (11.30) to have an inte­
grating factor dependent only on x is that

~ (8P _8Q)
Q 8y 8x

(11.34)

is a function of x alone. An integrating factor can be obtained in this
case as

.: 1 (8P 8Q
) )I (x) =exp - - - - dx .

.1'0 Q oy ox (11.35 )

Exercise.
(1) Guess a necessary and sufficient condtion for (11.30) to have an integraing factor
depedent only on y. and demonstrate your guess.
(2) Show that

1(x) =exp (1: P(S)dS)

is an integrating factor for (11.30) in llB.5.

(11.36)

The existence problem of the integrating factor is crucial to ther­
modynamics. The second law. in essence, asserts that the heat form
w = dE - l: xidXi. where E is the internal energy. Xi is an extensive
variable. and Xi its conjugate intensive quantity. has an integrating fac­
tor called the absolute temperature (or its reciprocal).

Notice that if the number of independent variables (x and y in
(11.30). E and Xi in thermodynamics) is two. then locally always in­
tergrating factors do exist. See Discussioin (B) below.
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Exercise.
Solve

dy 2 + yez y

dx =2y - xe ZlI
(11.37)

Discussion.
(A) If there is one integrating factor. then there are infinitely many. Suppose>. is
an integrating factor of Pdx + Qdy such that du = >.(Pdx + Qdy). Show that any
J1 = >'L'( 11). where t·( 11) is any differentiable function of u, is an integrating factor.
(B) Incompleteness of elementary exposition of thermodynamics. Born181

pointed out that
dQ=Xdx+Ydy

always has an integrating factor. His argument is as follows. dQ = 0 means

dy X
dx =-Y

(11.38)

(11.39)

so that it has (at least locally) a solution .p(x.y) =C (Notice that this integration
is generally impossible. if there are more than two variables). Hence,

( X).p"d.r+ .pydy = .;" - ';y Y dx = O. (11.40)

for any d.r. This implies that .;"I.;y =X/Yo so that there must be an integrating
factor,

This observation has a grave consequence on elementary exposition of thermo­
dynamics. because if a system is described in terms of E and l' (as is customarily
done ill the Carnot cycle). then we do not need the second law to assert that there
is an integrating factor for the heat forrn w =dE + pdl'. The elementary introduc­
tion is. if not incorrect. grossly incomplete. This was first recognized by Born and
motivated Caratheodory to study the mathematical foundation of thermodynamics.
(C) Demonstrate that

dQ =-ydx + :dy + kd z;

where k is a constant. has no integrating factor.

(11.41)

IlB.4 Homogeneous equation. The following type of ODE is called
a homogeneous equation:

dy = j (¥.) .
dx x (11.42)

If we introduce w = y/x. this reduces to the separable case IlB.2:

dw
dx =

j(w)-w

x
(11.43)

181 Read ~1. Born. Physik Z. 22. 218. 249. 282 (1922). if you can read German.
The lecturer recommends this review article to every serious (statistical) physicist.
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Exercise.
(1)

dy ( ax + by + c )
dx =! a'» + b'y +c'

(11.44)

can be converted to the homogeneous form (a'b - ab' #- 0 is assumed). How can
you do this? What happens if a'b - ab' =O?
(2) Solve

dU y4 + x4
-= xy3dx

(3) Solve
.dy x2 + y2
dx = xu

(11.45)

(11.46)

IIB.S Linear first order equation, variation of constants. The
first order equation

dy
dx = p(x)y + q(x) (11.47)

is called a linear equation: The equation can be solved by the method
of variation of constants. Let

y(x) =C(x)er p(s)ds. (11.48 )

Then. the equation for C can be integrated easily. As we will see in
11B.13. the method of variation of parameters always works for linear
equations (Lagrange's method).

I1B.6 Bernoulli equation. The first order equation of the following
form is called a Bernoulli equation:

dy
dx = P(x)y+ Q(x)yn. (11.49 )

where n is a real number. Introducing the new variable z(x) =y(x)l-n,
we can reduce this equation to the case IIB.S for z(x).

Exercise.
Solve
(I)

(2)

:: + xy - xy2 = o.

dU + Y _ y-2 = o.
d.r
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IIB.7 Riccati's equation. The first order equation of the follow­
ing form is called a Riccati 's equation:

(11.52)~~ =R(x)y2 + P(x)y + Q(x).

If R = O, then it is linear (-IIB.5): if Q = 0, then it is a Bernoulli
equation. Otherwise. there is no general way to solve this equation
by quadrature. However. if we know one solution y = Yl(X) for this
equation. the function v( x) = y(x) - Yl (x) obeys the followingBernoulli
equation.

dv
dx = [P(x) + 2R(x)Ydx)]v(x) + R(x)u2(x). (11.53)

so we can obtain the general solution for (11.52) as 'V + Yl in terms of
the general solution 'V to this Bernoulli equation.

Dlscusslon.l'?
Riccati discussed

~~ +al = bx": (11.54)

where a. band 0 are constant. To avoid trivial cases. we assume all ofthem are n011­
zero. Liouville demonstrated that this equation can be solved in terms of elementray
functions (trigonometric. exponetial. algebraic functions and their elementary com­
binations) only in the following cases:
(i) a = -2.
(ii) 0 = -4n/(2n -1) for n = 1.2.· .

(iii) 0 = -4n/(2n + 1) for n =1. 2 ·.

IIB.S Second order ODE. This has the following form183

(11.55)

(11.56)
dp

p dy = j(y.p).

If it is autonomous (-llA.6). it can be reduced to a first order PDE
by introducing p =dyjdx as the new unknown function. and Y as the
independent variable:

1821\ Yosida.Solution Methods for Differential Equations. second ed. (Iwanami,
19i8) p20-.

183We consider only the normal forms (....11A.4).
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If f does not depend on p. then this is IIB.2, so p can be obtained.
The resultant solution is interpreted as the first order ODE for y

1 (d )2 v2 d~ =J dz f(z) + consi., (11.57)

which is again separable. This is a well-known method to solve 1D
autonomous classical mechanical system.

I1B.9 Methodof lowering the order.

d2y dy
dx2 + a(x) dx + b(x)y = 0

can be converted to Riccati's equation by introducing

1 dy
Z=--.

ydx

The result is

(11.58)

(11.59)

dz ?
dx + z: + a(x)z + b(x) =O. (11.60)

This method is due to dAlembert (---+2B. 7) and is called the method of
lowering the order. (11.59) is called d'Alemberi's transformation. This
technique allows us to reduce n-th order linear ODE to n - 1-th order
(generally nonlinear) ODE in general.

lIB.lO The standard form of linear second order ODE. If a =0
in (11.58). the equation is said to be in the standard form. If a #: O.
then we introduce

We have

z = yexp (~Jx a(xl)dxl) . (11.61)

d2
z = _ (b _a

2
_ al(x)) z

dx2 4 2' (11.62)

This form is a useful starting point for approximate solutions.

Discussion.
The following equation:

(11.63)
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is called a Sturm-Liouville equation (......15.4), and

1
--£STU =AU
w(x)

(11.64)

with appropriate boundary conditions is called a Sturm-Liouville eigenvalue problem
(-+35). Any second order linear ODE can be converted to the Sturm-Liouville form.
(1) Demonstrate that

can be converted to the Sturm-Liouville form with the following relations

(11.65)

U:(X)

p(.l')

q(.r)

1 [Jir dt) ]= -- exp p_-dt .
P'2(;l') P'2(t)

= U:(X)p2(X).

= w(x)Po(x).

(11.66)

(11.67)

(11.68)

(2) Convert Bessel's equation (......21A.l) to the Sturm-Liouville form:

d (dU) ( m'2)- x- + 1 - - u =O.
dx dx x 2

(3) By the following LioUI,We transformation

u(x) =1·(t)[P(x)w(xW1/ 4

with

J'" fir'(S)t= --ds
p( s)

(11.69)

(11.70)

(11.71)

(11.72)

the above Sturm-Liouville equation can be converted to the Schrodinger form:

d'2 r
- -2 + l'(t)l' =>'1'.

dt

where the potential is given byI 84

(11.73)

In this formula x is understood as the function of t as defined by (11.71). This form
is a good starting point to study asymptotic behaviors of the solutions.
(4) Convert Bessel's equation into the Schrodinger form:

d
2
r re _ m

2
- 1/4] .= 0

dt2 + l t2 V • (11.74)

IS4d/dt in the following formula acts only in r{t): it is :KOT an operator acting
even outside the formula.
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Compare this result with (11.62).

(11.75)

IIB.II Linear second order ODE with constant coefficients.
Consider

cPy dy
dx2 + a dx + by = 0,

where a and b are constants.

(11.76)

is called its characteristic polynomial. and its roots are called charac­
teristic roots. We will discuss the general theory in the next section
(~I2.5). but in this simple second order case the general conclusion is
the following:

IIB.12 Theorem [General solution to (11.75)]. If the charac­
teristic roots of (11.75) are 0: and {3 (# 0:). then its general solution
is the linear combination of !PI(x) = ea x and !P2 (x) = eBx • If 0: = (3.
then the general solution is the linear combination of !PI(x) = ea x and
rp2( xl =xe'" (the characteristic roots need not be real.) 0
rpl(X) and !P2(X) are called fundamental solutions and {rpl(X).rp2(X)} is
called a system of fundamental solutions for (11.75). A set of solutions
is a fundamental system. if it spans (is a basis set of) the totality of
the solution set of the ODE. See 24A for more general statements.

Exercise.
Study the qualitative behavior of the following equation when the (bifurcation pa­
rameter) e changes its sign:

d2:r ? d.l' .2_
dt 2 + -( dt + ..... :r - O. (ll.ii)

(11.78)

IlB.13 Inhomogeneous equation, Lagrange's method of vari­
ation of constants. An ODE

d2y dy
dx2 + adx + by = f (x)

with nonzero f is called an inhomogeneous ODE (the one without f is
called a homogeneous equation). The general solution is given by the
sum of the general solution to the corresponding homogeneous equation
and one particular solution to the inhomogeneous problem. A method
to find a particular solution to (11.78) is Lagrange 's method of variation
of constants. Let 'Pi(X) be the fundamental solutions. We determine
the functions Ci(x) to satisfy (11.78):

u(x) =CI(X)'Pl(X) + C2(X)'P2(X). (11.79)
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One solution can be obtained from

dCl /(x )'P2(X)
dx = - W(x)

dC2 /(x)'Pdx)
dx = W(x)

(11.80)

where W(x) = 'Pl(X)'P2(x) - 'p2(x)'p~(x), the Wronskian (-24A.6) of
the fundamental system {'Pl, 'P2}. 0
If the two characteristic roots ex and f3 are distinct. then such a u is
given by

u(x) = _1_ (r ds/(s)eQ (t - ll ) _ r ds/(s)e13lt-S)).
ex - f3 10 10

(11.81)

Lagrange's method can be generalized to n-th order linear ODEs.

Discussion
Consider the relation of Lagrange's method and Green's function (-15). Riemann
introduced Green's functions to solve linear ODE, so it is often called Riemann's
function as well.

Exercise.
Solve
(1 )

(2)

(3)

d2y dy .
dt 2 - 2 dt + 2y = sin t. (11.82)

(11.83)

(11.84 )

(11.85 )

llB.l4 Equidimensional equation: invariance under scaling. If
an ODE is invariant under the scaling of independent variable x - ax.
then we call the equation an equidimensional equation (in x). Explicit
appearance of x in the equation can be removed by introducing t = In x
as the new independent variable. That is. the equation becomes an au­
tonomous equation (-IlA.6) in t (-lIB.IS Discussion).

If the equation is linear. then the general solution is given by the
linear combination of the power of x. whose exponent can be deter­
mined by introducing Xli (this is understood as log x if J.L = 0) into the
equation. For example. the general solution to

d2 R
-rR = -£(1 + £)
dr 2 r
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is given by R( r) =Ar€ + Br-€-l. The equation appears when we sep­
arate the variable of the Laplace equation in the spherical coordinates
(-18.6).

Exercise.
Show that the following Euler's differential equation

any an-Iy
xn _ +alXn - I__ + ... +any = 0

axn dxn - 1 (11.86)

can be transformed to a constant coefficient linear ODE with the introduction of
new independent variable t as x = e',

IIB.IS Scale invariant equation. If an ODE is invariant under
the scaling x - ax and y - aPy for some p. we call the equation scale
invariant. In this case. v == y / xP obeys an equidimensional ODE. so
that we can use the trick inIIB.14.

Discussion.
The following equation is called the Thomas-Fermi equation

a2
..; 1 312_-_-I

d.r2 - JXr
(11.87)

This is a scale invariant equation under J' ..... ax and ..; ...... a-3 ..; . In the physi­
cal situation. the equation is solved under the boundary condition ..;(0) = 1 and
lim.r-x ..;(.7") = O. so that such a simple scaling invariance does not hold. Still. if
one wishes to get an asymptotic form for large x. this should be a good strategy.
(1) Show that in this asymptotic limit

144
";(J') ~ -3

X

is a reasonable approximation.
(2) To obtain the correction to this solution. let us write

144
..;(.1') = -3 + 1...',

;r

(11.88)

(11.89 )

and solve the equation to first order in t '. The equation for lr' to this order becomes

(11.90)

(11.91)

(3) This is an equidimensional equation (......11B.14). so we Can obtain the solution
in the power form. The result is

with J = (-1 + J'f3)/2 ~ 3.ii. If we obey the instruction above, we introduce
t =In x to convert the equation into

(i:- - !!.-) L' = 18t·.
dt Z dt
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This is easy to solve (-12.5(A))).
(4) In this case the following amazing solution can be constructed. Using both the
asymptotic solution and the correction we computed. we can construct

144
(11.93)

where C and 11 are adjustable parameter. To make yeO) finite, we must choose
3 - 0.7711 = 0 or 11 = 3.9. Now, we can impose the boundary condition at O.
C = 144°.77/ 3 • Hence.

[

0 ~~] -3.90

;(x) = 1+ (12~/3) .11

According to Migdal. this solution agrees well with the numerical result.

(11.94)

lIB.I6 Clairaut's differential equation. Th following differential
equation is called Clairaui's differential equation

y =px + j(p).

where p = dyIdx and j is a CI-function. Its general solution is

y = Cx + j(C).

(11.95)

(11.96)

where C is a constant. The equation has a singular solution (-IIA.3).
which is the envelop curve of (11.96).
Let us assume that (11.95) has a solution y = y(x) which is not exhausted by
(11.96). Put this in (11.95). and differentiate it with s . We obtain

This implies p =C. or

dp (x+ df(P)) =0.
d» dp

x + af(p) = o.
ap

(11.97)

(11.98 )

This is the equation obtained from the derivative of (11.96) with respect to C and
(11.95).

Exercise.
Solve

y = p:r+ p _ p2.
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