
10 Conformality and Holomorphy

In 2-space any holomorphic function whose derivative does
not vanish defines a conformal map: a map which preserves
the angles between any two lines. Harmonicity is preserved
by conformal transformations. These facts imply that in
2-space conformal maps are very powerful tools to study
the Laplace equation. Any 'reasonable' region can be con­
formally mapped to the unit disk (the Riemann mapping
theorem). so that. in principle, if we can solve the Laplace
equation in the disk. we can solve all the boundary value
problems of the Laplace equation in 2-space. Some appli­
cations of Green's functions are given in 16D.

Key words: conformality. Mobius transformation. Rie­
mann mapping theorem.

Summary:
(1) Understand the definition of conformality 10.1. It is important
to recognize that holomorphy and conformality are (almost) equivalent
(10.2. 10.4).
(2) Most regions can be conformally mapped to the disk (Riemann)
10.10. A map which confonnally maps a unit disk to a unit disk (both
centered at the origin) must be a Mobius map 10.12.165

(3) There is an algorithm to construct a conformal map which maps the
upper half plane to the inside of a given polygon (Schwarz-Christoffel
formula) 10.14.
(4) Harmonicity is conformal-invariant 10.16.

10.1 Conformality: Let f be a map such that f(c) =a. and 11 and 12
be two curves crossing at c. f is called conformal at c if f( 11) and f( 12)
crosses at a. and the angle from 11 to 12 is identical to the angle from
f([l) to f([2)' A map f is called a conformal map, if it is conformal
everywhere in its domain.

Exercise.
Confirm the conformality of

165T here is a reference with computer-aided visualization: Y I Ivanov and M :K
Trubetskov. Hall,dbook of Conformal Mapping with Computer-Aided Visualization
(CRC Press. 1995). containing a diskette (for PC). It says 'Handbook: but detailed
introduction is given, so it is a self-contained reference for those who know rudiments
of complex analysis (of the level of these notes).
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(1) sin e around z = i + 1.
(2) tan z around z = i.

10.2 Holomorphy implies conformallty. Take infinitesimal com­
plex numbers hand k, and consider an infinitesimal triangle (0. h;k).
The image of this triangle by a holomorphic function around the origin
is given by (/(0), I(h)\ I(k)) = (/(0),/(0) + I'(O)h,/(O) + I'(O)k)+
higher order terms. Hence. the angle between I(h) and I(k) at 1(0)
is identical to the angle between hand k at 0, if 1'(0) :/= O. In other
words. a holomorphic function whose derivative is not equal to zero
defines a conformal map.

Exercise.
Let f and 9 be a function on C. and conformal.
(1) Is f + 9 conformal? [What happens if 9 = - f?J
(2) Is f 9 conformal?
(3) Is fig) = /0 9 conformal? (Assume that no complication due to the domains
occur. for simplicity.)

10.3 Convention: Conformal map from a region D to another
region E: Henceforth. when we say I is a conformal map from D to
E. we mean that I is a biholomorphic map (i.e.. the map and its inverse
are both holomorphic) between D and E.

Exercise.
(1) Illustrate the inversion z - u· = 1/::..

1.....

lJ t- .. - ., ...... ... (1)

-/ 0 2- &

@ e )1-
~

(2)

,: - Zo
::.-u·= --=.

::. - :0
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Show that the real axis is mapped onto the unit circle around the origin. This is
an example of the :Mobius map (.....10.5). Find the image of the upper half space.
(3)

where Q is a real number.

z ..... w = z1r/o., (10.2)

.lJ'11.

o
(4) Study the map:

c D

.: ..... u. = e1rz / a • (10.3)

where a is real.
(5) Study the map:

c
-/ /): J

.: .... u.= (':+1)2
z-l

A

( lOA)

(6) Study the map:

.: .... u. = (1 + :;;1r /0 ) 2
1 _ :;;"/0 (10.5)

(i) Study the map: tr =tan c.
(8) How is a square whose edges are parallel to the real and imaginary axes mapped
by e"?

10.4 Conformality implies holomorphy: Let j : z - w = j(z) be
conformal in a region D. Then. j is holomorphic in D and f'(z) # o.
o
[Demo] Let ~i9(t) =z + te'", and ~6(t) =Jh9(t») .

.A~(O) = V z cose + ito.. cose + ivy sin e+ it'll sin 6

= J:r cose + JII sine = ~[(J.. - iJy)ei 9 + (J:r + ifll)e-
i 9

] .

(10.6)

From the figure we have

I.\~(O)I =e-i19+0 ) A~(O) = ~[(fz - i!y)e- io + (Jz + i!y)e- i
(26+ 0 l . (10.i)
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(10.10)

(10.9)

From this
dl~~O)l =u. + ijy)(_2i)e- i(28+c. ) , (10.8)

hut this is real for any fJ, so Iz + ily = 0, which is the Cauchy-Riemann equation
(......5.3). From (10.8). we get jz - ily = 2/z =2j'{z) ¥- O. Looman-Men'shov's
theorem166 tells us that if the real and imaginary parts of J are partial differen­
tiable, then the Cauchy-Riemann equation implies holomorphy.O

Discussion.
Let {In} be a family of conformal maps, and it has a unique accumulation point

I = lim" In'
(1) Is f conformal?
(2) If not. make a counter example.
(3) Study a sufficient condition for f to be conformal.
(4) Demonstrate that converging power series define conformal maps in their con­
vergence disks. (We must assume J #- 0.)

10.5 Mobius transformation: The following map

az + b
tv = ---

cz +d

with ad - be #- 0 is called a Mobil1s transformation (or linear transfor­
mation or linear fractional transformation) (if ad - be = O. then w is
constant ).
Discussion.
(A) :'Iobius transformations make a group: Let G be a set on which a product ab is
defined (that is. if a E G and bEG. then ab E G). G with this operation is called
a group. if
(1) a(be) = (ab)e. where a.b.c E G (associatitJity).
(2) There is an element e (called the unit) such that ea =a for any a E G.167,

(3) For any a E G. there is an element (called the inverse of a) a-I such that
a-10 = e. 16e.

The easiest way to demonstrate that Mobius transformations make a group is
to realize the following relation: Let

a;; + b , 0'z = b'
u· = --. w - ~-~

c;; + d - c'»+ d'

Then.

U' 0 IC' = (10.11)

166 T heorem [Looman-Men'shov].
If oj lox and oj loY exist and satisfy the Cauchy-Riemann equation in a region D,
then J is holomorphic in D.

16'iprecisely speaking. this eL = e is called the left unit. The right unit is defined
as oeR =a for any a E G. Actually er =eR and is unique. Demonstrate this.

168Again. the left and right inverses can be defined, but they are identical for a
given element.
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(
Q p) = (a b) (a' b').
') bed cl dl (10.12)

(4) :r\otice that even if we multiply a common factor to a, ... .d, the result is the
same map. Hence. we may demand that the matrices in the above have determi­
nants normalized to unity, The group of 2 x 2 complex matrices whose determinants
are unity is called 5L(2.C).169
(B) Three points determine a Mobius transformation. If we specify the des­
tinations of three points by a Mobius transformation. then its form is fixed uniquely.
This should not be hard to guess. if the reader consider the problem of fixing the
coefficients in the Mobius map.

Exercise.
Let

;;-i
te(;;) =-,'

':+1

Then. I Ill:: > 0 <===> Itl' I < 1. See 10.13.

(10.13)

10.6 Decomposition of Mobius transformation: Any Mobius
transformation is constructed by a consecutive applications of the fol­
lowing four elementary maps

z - zeh .' rotation by angle 1/-'. (10.14)

z - Rz (R > 0) scaling. (10.15)

Z --; z + a translation. (10.16)
z --> liz inversion. (l0.17)

10.7 Circline: Following Priestleyl?", we will denote circles and lines
collectively as circlines.

10.8 Cocircline condition: A necessary and sufficient condition for
distinct four points z. Zl' Z2. Za E C n{oo} to be on the same circline is
that the cross ratio (z. Zl. Z2. za):

(l0.18)

to be real. 0
Note that this is equivalent to the elementary geometrical theorems il­
lustrated here.

1691t5 important subgroup is 5£"-(2) consisting of unitary matrices, which is im­
portant in conjunction to the representation of the rotational group in 3-space.

nOH.A. Priestley. Introduction to Complex Analysis Oxford UP, (revised edition
1990). This is a wry nice introductory book,
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10.9 Mobius transformations map circlines to circlines. This
follows from the invariance of cross ratio under Mobius transformations.
Let f be a Mobius transformation. If Zll Z2, Z3 are distinct, then

(10.19)

This call be checked by an explicit computation. Immediately from this
and 10.8. we can verify the desired statement. 0
We will see in 10.12 that only Mobius maps have this property.

Exercise.
Prow the relevant elementary geometrical theorem. and demonstrate that the cross
ratio is invariant under Mobius transformations to complete the argument in the
main notes.

10.10 Riemann mapping theorem: Let D be a region in C such
that aD contains at least two points. Then, D can be conformally
mapped to the unit open disk. 0
The proof of this theorem is beyond the scope of these lecture notes.F!
There is a constructive algorithm which asymptotically gives the de­
sired conformal map (Koebes method of image-domain). See Wilfe.

10.11 There is a conformal map between two regions. This
theorem implies that if both regions D and D' have at least two points
in their boundaries. then there is always a conformal map which maps
one onto the other. Actually. the map can be fixed uniquely if we de­
mand that a point zED is mapped to Z' ED'. and a direction .A at z
is mapped to a direction .A' at z', 0
Discussion [Joukowski transformation].
Let

(10.20)

where a is a positive constant. The concentric circles 1(1 = b(~ a) are mapped
to confocal ellipses with the foci at :l:2a. In particular. when b = a, the circle is
mapped to the segment on the real axis connecting :l:2a. For b < a the circles are
again mapped to the confocal ellipses.
(I) Demonstrate the above statements.
(2) Draw the images of circles on the (-plane passing through ( = a. These images
are generally called the Jou.kowski wings.

10.12 'Unit disk - unit disk' must be Mobius: Conformal trans­
formations which map the unit disk onto itself must have the following

171 For a complete proof. see for example. J.W. Dettman. Applied Complex Vari­
ables p257-. Chapter 6 of H.S. Wille. Mathematics for the Physical Sciences (Dover.
1962) is a self-contained exposition.
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form
. z-aw = et(J _

1- az
(10.21)

where 10'1 < 1.0
Note that this is the map which maps the unit disk onto the unit disk,
and the point a to O.

Discussion.
The destination of three points on the unit circle fixes the map which maps the unit
disk onto itself.

10.13 'Upper half plane -- the unit disk' must be Mobius:
Conformal maps which map the upper half plane onto the unit disk
have the following form

f(JZ - a
w=e -­z-a (10.22)

10.14 Schwarz-Christoffel formula: The conformal map w = <p(z)
which maps the upper half plane (~z > 0) to the inside of the n-gon IT
in the figure whose vertices are at bl _· · .. bn (all assumed to be finite).
and the interior angle at b, is 7raj (0 < Qj < 2) is given by

(10.23 )

where bj = cp( aj). and c(# 0) and c' are constants dependent on the
position and the size of the polygon IT. If an is at infinity. then drop
the corresponding factor from (10.23). 0
You need not remember the technicality. The point is that there is a
method to construct a conformal map which maps a polygon to the
upper half plane (hence to the unit disc. cf. 10.13).
However. practically. it is wise to use a style book such as the one cited
at the beginning of this section. Also. the lecturer has heard that now
softwares are available for this formula.

Discussion.
Typical examples are
(1)

z _ u. = r(o)r(B) r t o - 1(1 _ t)8- 1dt
f(o+;3) 10 '

which maps the upper half plane to a rectangular triangle.
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o
cI:rr.

(2) Elliptic integral:

z -+ w =c fo: dz
10 J(1-.:2)(1-1l2z2)'

where K and K' are computed from w(l) and w(l/Il)'

(10.25)

Lt t LlN
/(- ,·{C/ 1<-+(' /C /

elJ tiL
?

Cl~ ~,

-/ I -1< K

10.15 8/8z and 8/8'%. It is often convenient to introduce the fol­
lowing operators:

(10.26)

If we formally assume that z and z are independent variables, then we
get these relations. Furthermore. it is even true that

(10.29)

(10.28)

(10.27)

oj = J'(z).oz
o 0
-- = t::..azoz

and the Cauchy-Riemann equation (-+5.3) reads

oz az ez oz- = - = 1, - = - =0,oz az oz az
However. we should accept that (10.26) are definitions. Do not try to
imagine the meaning of changing z while keeping z constant. Notice
that

oj jaz = o. (10.30)
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Notice that the following is also true:

(
8f ) = 87.
8z az (10.31)

See also 16A.11-13.

Exercise.
(I) Demonstrate the above statements.
(2) Let / and 9 be holomorphic in appropriate domains. Demonstrate

(10.34)

(10.32)
09 0 f og of og of
--a;- = ow oz + au: 0:; ,

09 0 f og of 09 of
oz = au' oz + au: oz' (10.33)

be a polynomial of z and z. P is holomorphic if and only if P does(3) Let P(:.
not include ;.
(4) Let f = u + it' be a holomorphic function on a region D. Then (-(10.29) ),

(Pf [Pf
~u = ~o:oz' ~t' = S o::oz'

(5) Let f be a holomorphic function. and 9 be twice differentiable. Show

~(g 0 f) = (~g)I!'(:;W· (10.35)

To show this note that
02g0 / 02g 0/ of
o:;oz =o(o( a: 0:; .

(6) Let f be holomorphic in a region D. Since

a 2 0- --
0= -1ft:)! = /(:;)-/(:;) = /(:;)/'(:;).

0: 0:

if If(:)1 is constant on a region D. then / must be a constant.

(10.36)

(10.37)

(10.38)

10.16 Conformal Invariance of harmonicity: Let ~ be harmonic
(......2C.l1. 5.6) in a region A in the w-plane (w = u + iv). and f be
a conformal map w = f (z) from the a-plane to the w-plane. Then,
¢(x.y) ::; ~(u(x.y).v(x,y)) (here f(z) = u(x,y) + iv(x,y)) is again
harmonic in the domain D which is the inverse image of A by f. In
particular.

(
8
2

82) 12(82 82
)

8x2 + 8y2 ¢::; If (z)1 8u2 + 8v2 ~.

(10.39)

o
[Demo] The smartest demonstration ma;)' be: %z = !,(z)%w, and o/tJZ =
t' (:){)/ee. so that

() () a I ) () "'" f't )-JI() {)2 ;r..--4> =-f (:; -;-'.t.' = :; z l:I <:\='.t.'.
(); {)z e: ou: vWvU'
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Here we have used that I'(z) is holomorphic (-6.12), so {}/'(::)/o= = 0 (the
Cauchy-Riemann equation -lO.lS). 0
See16D for applications.
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