
1 Introduction

Representative linear partial differential equations (PDE)
are introduced, and the main strategy to study them - the
use of superposition principle - is outlined. This is an in­
troductory section of the lectures. so the contents are not
arranged in a logical order. For example, although we dis­
cuss PDE here. partial differentiation is reviewed in the next
section. The Laplacian is introduced, but its more detailed
discussion in conjunction to vector analysis also appears
there. Therefore, the reader has only to try to get a general
flavor.

Key words: Wave equation. diffusion equation, Laplace
equation. linear boundary-value problems. linear operator.
superposition principle. Fourier decomposition. Green's func­
tion. principal part. hyperbolic. parabolic, elliptic. Dirich­
let. Neumann. Robin.

Summary:
(1) Superposition principle is the key to linear problems. Consequently.
it dominates 'conventional mathematical methods for physicists' (1.4­
6. 1.8).
(2) The Laplacian describes the deviation from average (1.13. 1.14).
(3) The nature of each type of second order linear PDE (1.15) can
be understood with a representative physical example (1.17-19). Dis­
cretizing PDE is also a very good practical way to understand its nature
(1.15. 1.18(4)).
(4) Do not forget that PDE is 110t the only mathematical means to
describe Nature (1.12).

The purpose of this introductory section is to give an overview of stan­
dard linear PDE. and a quick exposition of practical approaches to
understand their properties. This is not an introduction for those who
have never seen any PDE. A minimum prerequisite may be that the
reader does not feel uncomfortable with elmentary derivations of the
wave and the diffusion equations (in l-space) in aID.II and in aIB.2.

1.1 Spatially extended system. The main aim of the notes is to
exhibit elementary applicable mathematics that may be helpful in un­
derstanding spatially extended systems. for which variations of quanti­
ties from place to place matter. Most systems we encounter in physics
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are such systems. There are important exceptions such as point mass
systems. lumped circuits. etc.. but they are highly idealized systems,
and are usually considered as limiting cases of extended systems.

Traditionally, spatially extended systems have been described in
terms of partial differential equations (PDE --.1.16), so that math­
ematical physics courses have mainly been devoted to the tools and
concepts useful for PDE.

As is briefly stated in 1.12 we should be more flexible in modeling
extended systems: PDE are not the only tools. However. many mathe­
matical ideas surrounding PDE are still basic and also highly useful in
other contexts as well, so that the course mainly discusses PDE.

Discussion.
For conventional topics. see Appendix al.
Consider the following 'non-conventional' problems:
(I) On sand dunes. we can find fine ripples (aeolian ripples) on the surface. Make
a (hopefully quantitative) model of these ripples. R A Bagnold. The Physics of
Blown Sand and Desert Dunes (William Morrow. 1941. !\e'" York) is still a classic
reference. The study was supported by the need of desert warfare. There is a recent
attempt by Xishimori and Ouchi. Phys. Rev. Lett. 71. 197 (1993). See also R S
Anderson and K L Bunas, Xature 365. 740 (1993). There will be a review article
by Xishimori in Int. J. Mod, Phys,

"'e can also find sand ripples in shallow waters. Is the mechanism forming
these underwater ripples the same as the ripples on the dunes?
(2) On mountain slopes without vegetation. sometimes ripple patterns made of peb­
bles can be found (B T Werner and B Hallet. Xature 361. 142 (1993)). These are
formed by frosts. Make a model of these patterns. d. P A Mulheran, J. Phys, I
France 4. 1 (1994).
(3) Read H Xleinhardt. The Algorithmic Beauty of the Sea Shell (Springer. 1995).
which contains a disket for PC, A cellular automaton model comparable to this
work has appeared recently: Kusch et al.. J. Theor, Biol, 178.333 (1996).
(4) For snow crystals. see E Yokoyama and T Kuroda. Phys. Rev. A 41. 2038
(1990).
(5) Understanding developmental processes is of vital importance in understand­
ing evolution and taxonomy of animals. There is a very serious attempt to model
Drosophila development. The state of the art paper may be J. Reinitz and D. H.
Sharp. "Mechanism of eve stripe formation," Mechanism of Development. 49, 133
(1995).

1.2 Wave, Diffusion, and Laplace equations. The most typical
partial differential equations appearing in classical physics are the fol­
lowing three equations 1.2a-c. Their derivations in physical situations
can be found in Appendix al. but a general argument in 1.14 should
tell the reader sufficiently convincingly why these are the representa-

2



tives.
In the following. t is time. 'l/J denotes a (scalar) field (a function of

space :r and time). and the symbol Li. is the Laplacian (Li. = div grad
-2C.ll). which reads in the Cartesian coordinates as

(1.1 )

where d is the spatial dimensionality (cf. 16A.2).

1.2a Introduction to wave equation. The Wave equation (exam­
ples: alD.9-11. alF.8) is given by

(FijI
BiZ = c2Li. 'ljJ. (1.2)

where a positive constant c is called the wave speed (-2B.3: also see
the Discussion below).

aID.II is the most elementary example of this equation. which
can be understood without vector analysis.

Exercise.
Show in l-space that sinhtr - et} satisfies the wave equation. More generally.
f{l' ± et) is a solution. if f is twice differentiable (-2B.4).

Discussion: Propagation of singularity.
Rewrite the ID wave equation

(1.3)

(1.4)

in the following form:
Ol' OU OU Ot·
-=e-. -=C-.at O.T Bt ox

Is there any curve 0(.1', t) =0 on which u and l' are continuous but their derivatives
jump'?

Assume that there is a curve p( x. t) =0 along which the solution is not smooth.
and denote by [a] the jump in a across the curve, We must have

(1.5)

Xotice that u and r are smooth along the curve. so that. for example.

(1.6)

where Uo denotes the directional derivative along the normal direction to the CUI"ve.
The slope of the cum,' is given by dx/dt =-¢tfoz. Hence, (1.5) implies

dx dx
[uoj- + e[ro>] =O. [u o]+ c[ro]-d =O.dt . t

(l.i)
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(1.9)

(1.8)(dX) 2 _ c2 = O.
dt '

dx
-=±c.
dt

That is. singularities can propagate along x±ct= constant. These curves are called
the characteristic curves (-30.2). To have such curves is a characteristic feature
of hyperbolic equations (-1.16. 30).

or

If there is a curve we are seeking. there must be a nontrivial solution for IU,pl and

[t~c>l. so that

1.2b Introduction to diffusion equation. The Diffusion equation
(examples: alB.2. ale.I. alF.I7) is given by

o'l/J = Dt:.'f/;. (1.10)ot
where a positive constant D is called the diffusion constant.

alB.2 may be the simplest example if adapted to l-space as fol­
lows:
Let j be the flux density of heat in the z-direction. Consider a small interval
[.1' •.1' + d.r]. At z j(:I.') of heat flux is flowing into the interval in unit time. and at
.1' + dx j (,1' + dx) is flowing out in unit time. Hence. in the small time span dt, the
net 'income' of the interval is given by

j(x) - j(J.' + d.l') = - ;~ d« + o[dx]. (1.11)

\Ye assume Fourier's law j = -K8T/ox (T is temperature). and the heat capacity
of the interval is Cdx, The energy conservation tells us

Cd x 8T = _l!- (-K 8T) dx.
8t 8J.· 8x

(1.12)

If we assume K is a constant. we obtain the 1D diffusion equation.

(1.14)

Discussion: Burgers equation,
The following equation is called the Burgers equation

8u 8u 82u

8t + U 8J.' = v 8x 2 ' (1.13)

where l! is a positive constant (viscosity). The equation was proposed as a model
equation of the :\avier-Stokes equation (....a2B.5). This is a nonlinear equation in
the sense that the equation is not invariant under the scaling of u . However, this is
a disguised linear equation.
(1) With the aid of the famous Cole-Hop] transformation: l

2 81no
u =- rs:

1Eberhard Hopf, 1902-1983.
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demonstrate that (1.13) can be transformed to the diffusion equation:

T
I

~
~

~
.~ .,- '-::,.- .- ..._..0::._-

llf = -f ( X,) - +(x - ( At)T

_ ~ c>.f C AC
Z>X

cLrt

4'-
\l--~-'

_---~-----l

(l.1i)

(1.16)

(1.18)

(1.15)

8u 8u
at + 11 8.r = O.

U(.2'. t) = f().· - et).

8u/8t + dlu/8x = 0

with the initial condition u(.2'.O) = J(:r) is given by

80 820
8t = 1/ 8x2'

(2) If the reader solves this problem for the initial condition for u(x,O) = sin z,
she will easily realize that the shape of the wave is distorted and the one side of
the wave becomes steeper. This tendency is enhanced if 1/ is small. Thus we can
imagine that for

any non-increasing smooth nonconstant initial condition eventually gives rise to a
non-smooth solution. This is the formation of shocks. Since shock is a disconti­
nuity, it cannot be studied by classical solutions. A function which is sufficiently
differentiable and satisfies a PDE is called a classical solution of the PDE. To de­
scribe a shock we need non-classical solutions. A wider class of solutions with less
smoothness such as the shock solution in the current example are called generalized
solutions or weak solutions.
(3) For (1.16) to have a (,1-solution2 for all t > O. the initial condition must be
non-decreasing. This is intuitively easy to see. if we note that the solution to

If the initial condition is decreasing. then at some finite time. the solution becomes
discontinuous.

1.2c Introduction to Laplace and Poisson equation. The Laplace
equation (examples: aIB.3. aID.IO. alF.6. alE.9)3 is given by

0= D.4'. (1.19)

This appears as the equation governing the stationary solution to the
wave equation or the diffusion equation.

Exercise.
In 2-space In(I2 + y2) satisfies the Laplace equation away from the origin (-5.7).

The following equation
(1.20)

2Cp • where p is a nonnegative integer. means the class of functions which are
p-rimes continuously differentiable.

3Pi('rre Simon Laplace. 1i49-182i. See 33.3 for a brief biography. He introduced
.l in 1785 in his work on celestial mechanics.
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is called Poisson's equation (examples: alE.lO, alF.6),4 where f is an
appropriate" function.

1.3 Typical problem. A typical problem we wish to analyze is a
initial-boundary value problem. For example, consider the wave equa­
tion on a region" D

(:t22 - C
2D.) 'I/J(r,t) = p(r.t),

with the boundary condition?

'I/J(r, t) = cp(r. t) for r e Bl) for all t > 0,

and with the initial condition:

'¢(r.O) = f(r) and 8t'¢(r.O) =g(r) on D.

(1.21)

(1.22)

(1.23)

--

A general strategy to solve this type of problem is to decompose the
problem into simpler problems with the aid of linearity (-.ott.S).

Exercise.
Set up the following problems mathematically:
(1) At time t = 0 the two rods haw uniform temperatures T1 and T2• respectively,
and they are brought into thermal contact with each other at their one ends. The
remaining ends are insulated. The lengths. heat capacities per unit length, and
thermal conductivities of the uniform rods labeled 1 and 2 are denoted as {L I • L2 } .

{CI.C2} and {.h'l.Ad. Find the equations governing the temperature field along
the rods with appropriate auxiliary conditions.
(2) A semi-infinite cylindrical rod of radius b has a heat capacity per unit volume
C. and thermal conductivity A. The curved sides are insulated thermally and the
end is subjected to a time-dependent flux of heat

F =Acos2J/2 t for t > 0,

The temperature T( r• ..p. c) is initially zero throughout the material.
(3) A pair of infinite. insulating planes are placed parallel to the xv-plane. The first
one is at .: =0 and the second at z =a. The plates are coated with electric charge
so that the electrostatic potential is

w(x.y.O) =90 sin ky <;:>(x,y, a ) =Yocosky.

4Simeon Denis Poisson. 1781-1840.
SIn mathematics such adjectives as 'appropriate'. 'suitable: etc., are used to

avoid technical details. "'e wish to assume that J is sufficiently well-behaved. e.g..
smooth. to avoid pathology.

6 A connected set is called a region. It is understood to be an open set unless its
closedness is mentioned explicitly. For a summary of elementary topology see Ai.

i eA. denotes the boundary of the set .4. This is a standard notation.
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where k is a positive constant. Find the electrostatic potential, and the surface
charge density. [You must assume some extra condition on the asymptotic behavior
of the solution at infinity. ..... 1.19 Discussion.]
(4) A semi-infinite string lying along the z-axis and a harmonic oscillator are cou­
pled to each other at x = O. The harmonic oscillator is only allowed to move in the
y-direction. Also the string is allowed to make transversal displacement 4>(x, f) in
the y-direction. Ignore gravity. The oscillator is made of a mass m and a spring of
Hooke's constant k.
(5) A very long rod of small cross-section (this is a l-space problem) is periodi­
cally heated at one end as T = To + T1 cos ct. The heat diffuses along the rod
with thermal diffusivity D. and also radiate out from the rod into the surrounding
medium held at constant temperature To according to the Newton's law of cooling
(d. (1.5i)). Find T(.T. f).
(6) There is a spherical cavity of radius a whose center is at the origin in an infinite
medium of conductivity (7. Far from the cavity is a uniform current of density i»
in the c-direction. Find the current field in the medium. the electric field in the
cavity. and the charge density at the cavity surface.
(i) A spherical planet of radius R is formed at time t = O. The initial temperature
of the planet is T = O. but the planet contains radioactive materials whose decay
generates heat at a rate of h per unit volume per unit time. Assume h is uniform
throughout the planet. The heat capacity of the planet is C per unit volume, and
the heat conductivity is K. The surface of the planet is at temperature T = 0 for
t > O. Find the history of T. (d. 16B.9 Exercise (B))
(8) A hollow nonconducting half spherical shell of radius R carries a uniform surface
charge (7. Its center is at the origin and its disk-shaped boundary is on the xy-plane
with the body below it. Suppose you put a particle of mass m. charge q at a point
(0. 0.':0) (0 < ':0 < R). Find the (7 such that the electric and gravitational forces
balance. (..... 26B. 7)

1.4 Linearity and superposition principle. An operator is a map
which maps a function to another function (Or number. or another
mathematical object ).8 For example.

r:

d/ dx : f - df / dx

and
sq: f-l

are operators. An operator L is a linear operator. if

(1.24)

(1.25)

(1.26)

8As we will see later in 34A. an operator is not solely defined by its form (say.
d/d.t). Its domain must be very carefully specified. The form and the domain
together define an operator. Therefore. the exposition here is informal.
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where a: and (3 are numerical constants. This relation is called the su­
perposition principle. For example. djdx, and al- c?~ in 1.3 are linear
operators. sq above is a nonlinear operator.

Discussion.
Alexander Bell's original motivation was to send several Morse code messages along
the same telegraph line by using different frequencies, exploiting the superposition
principle.

1.5 Linear decomposition of problem. In the problem 1.3, no­
tice that the auxiliary conditions are also written in terms of linear
operators: to evaluate the values of VJ at the boundary aD, the map

Al : 'If; -+ VJI,w (1.27)

may be interpreted as a linear map. Likewise. the evaluation of the
initial value

A 2 : 'I/J -+ VJ!t=o (1.28)

is also linear. Hence. the linear problem in 1.3 has the following general
form

L'l/! = p. with A1'1./! = 'P. and A2'1./' = f.
The superposition principle allows us to decompose this into
(1 )

and
(2 )

(1.29 )

(1.30)

L'l./12 ;;;;; P with A1'1./'2 ;;;;; 0 and A2VJ2;;;;;0.(1.31)

(1) can further be decomposed into
(11) L~'ll ;;;;; 0 with A1'l/!1l = 'P and A2'~!1l ;;;;; 0 and
(12) L'I./'12 ;;;;; 0 with AlVJ12 = 0 and A2'l/'12 ;;;;; f. Such a further decom­
position mayor may not be useful (see separation of variable, e.g.. 18).

In (2) if P ;;;;; PI+ P2· we have only to solve L'l/Ji = Pi. thanks to the
superposition principle. but again whether such a further decomposi­
tion is useful or not depends on each problem.

It is conceivable to use the superposition principle to decompose a
given problem into standardized 'atomic' problems. This ultimate use
of the principle was proposed by Fourier and by Green: they proposed
two major strategies to exploit linearity.

1.6 Fourier's idea, ca1807. Daniel Bernoulli in 1735 asserted that
the general solution to the ID wave equation is given in the following
form:

1 :x;

'I./!(x. t) ;;;;; -ao(t) + L {an(t) cos nkx + bn(t) sin nkx}. (1.32)
2 n=1
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where a;(t) and b, (t) are functions of time t. He claimed that a gen­
eral function of t can be written in terms of the linear combination of
trigonometric functions (see Fourier expansion 17).

Discussion.
Daniel Bernoulli conceived his scheme through an attempt to solve the wave equa­
tion on an interval [0.L) with a homogeneous Dirichlet boundary condition. Phys­
ically. he considered the wave equation as a limit of a harmonic chain, so it was
very natural for him to guess that the solution must be a superposition of harmonic
modes:

(X

u(x, t) = L Qn(t) sin n~x. (1.33)
n=l

For the 11-t11 mode. its wavelength is >. = 2L/n. The wave speed is c. so that its
angular frequency must be .-) =21rcj>' =nC1r j L. Hence,

d
2
an (t ) = _ (!?!2)2 (t) (1.34)
dt2 L On •

However. Euler(-4.4). dAlembertf -2B.7). and others did not
agree. because they seemed to think that the condition that a function
is constructed from trigonometric functions restricts the generality of
the constructed functions.

Fourier. who came to the stage about 50 years later, wished to
verify D. Bernoulli's idea mathematically. He gave the now famous for­
mulas for the Fourier coefficients (-+17.1). and claimed that Bernoulli's
assertion was correct for any bounded function with the aid of termwise
integration. His idea was not accepted by the leading French mathe­
maticians of his day like Laplace( -+33.3). Langrange( -+3.5). and Pois­
son, although they recognized the importance. This explains well why
Fourier's idea was a source and spur of modern mathematics. and has
strongly influenced its foundation (-17.18).

1.7 Who was Fourierf" Joseph Fourier was born on March 21, 1768
in Auxerre. the ninth child of a master tailor. Although he became
an orphan at the age of ten. his brilliance gained him a free place at
the local Benedictine school. He was a teacher of the school when the
Revolution began: he became the president of the revolutionary com­
mittee of Auxerre. He was arrested under Robespierre's regime. Only
the fall of Robespierre saved his head. After much more turmoil (being
arrested. released. rearrested. etc.) he eventually succeeded Lagrange
in the Chair of Analysis and Mechanics at Ecole Polytechnique. when
he was ordered to join Napoleon's invasion of Egypt. He occupied sev­
eral important administrative and political posts there.

9This is from Section 92-3 of T. W. Korner. Fourier Analysis (Cambridge. 1990),
which is probably the best introductory book of Fourier analysis for those who can
appreciate right mathematical taste.
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He returned to France in 1801 when the French expedition surren­
dered. He was appointed the Prefect around Grenoble. During his 14
year tenure, he drained twenty thousand acres of swamp around Bour­
goin, which resulted in major economic and health benefits, and made
a new road across the Alps (present Route N91). Meanwhile he helped
the making of the Description of Egypt and made an epoch in Egyp­
tology. On a personal level he encouraged Champollion and as Prefect
preserved his protege from conscription.

While being Prefect. in 1804 he took up the heat conduction prob­
lem. In three remarkable years he found the diffusion equation (-28,
38), developed new methods to solve them, and applied them to sup­
port his solutions.

In 1807 he submitted his work to the Academy. but was rejected
(the committee consisted of Lagrange. Laplace, Monge, and Lacroix).
In 1811 the Academy gave him a second chance. He submitted his ear­
lier essay with some further results (the most notable among which was
the introduction of Fourier transformation -32). Although Fourier re­
ceived the grand prize. the accompanying report made it clear that La­
grange and Laplace had not withdrawn their objections. This episode
should be taken more as a tribute to the originality of Fourier's meth­
ods than a reproach to mathematicians Fourier greatly respected (and.
in Lagrange's case. admired).

Again. some political turmoil disrupted his life briefly. but even­
tually his essay was published in 1822 and he was elected permanent
mathematical secretary of the Academy. He encouraged as a 'grand
old man' younger talent such as Liouville (cf. 15.4). Sturm (cr. lIB.7,
15.4). Dirichlet (cf. 17.18(1). 1.18(2)). and Navier (cf. alE.6).

1.8 Green's idea, 1828. Green established Green's theorem (-16A.19)
and applied it to the electric potential problem. and wrote down the fun­
damental integral formula for harmonic functions (-alB.3. 2C.ll).
In retrospect. his theory is another ultimate exploitation of superposi­
tion principle: a function can be decomposed into the sum of impulses.
If we denote the impulse of unit strength concentrated at point x by
Ox .10 any function f can be regarded as

f = L f(x)o;r.
;r

(1.35 )

Here we interpret the summation over x intuitively. Thus to solve
Qu = f. we have only to solve the problem for Qu = 6:r thanks to
the superposition principle. Its solution G, was introduced by Green,

lOIn terms of the li-function we will learn later (-3.8, SB.12, SB.13, 14.5) that
we may write 'liz =li(x -- y)dy: liz itself is a respectable mathematical object called
the atomic measure concentrated at x,
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which Riemann (-7.15) later called a Green's function. The solution
to the original problem can be written as

u = L: f(x)G:r.
:r

(1.36)

where the interpretation of the summation symbol is the same as in
(1.35).
Remark. As we will learn later (-16~ 36~ 38-40)~ we need Green's
functions for homogeneous (i.e.. zero) boundary conditions only. Hence,
in these days. when we speak about Green's functions, they are under­
stood with homogeneous boundary conditions.

Discussion
Read J. Schwinger. "The Greening of Quantum Field Theory: George and I:' in
Julian Schwinger. The physicist. the teacher. and the man (World Scientific. 1996)
edited by Y. J. Xg.

1.9 Who was Green?ll George Green was born in June 1793 in the
village of Saxondale six miles from Nottingham. He became a pupil of
a secondary school in 1801 where he studied until the summer of 1802.
A 27 year old teacher. Robert Goodacre. was able to interest George in
mathematics and natural science. However. his father's baker business
flourished. so he had to be his father's assistant. Thus he had to edu­
cate himself: he learned Laplace's (-33.3) Analytical Mechanics. the
work of Lagrange (-3.5). and also a complete collection of Proceed­
ings of the Royal Society was available. He also learned Coulomb and
Poisson (ef. 16D.8. 32C.2).

In 1826 a public subscription library was opened in Nottingham,
which helped to publish his first. largest and most important scientific
work "An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism" in 1828. The edition was small
and most of them were scattered among homes of his fellow subscribers.
Thomson (subsequently Lord Kelvin) managed to get three copies with
much difficulty less than 20 years later.

In 1829. his father died, and in 1833 Green decided to enter Cam­
bridge. In 1837 he passed brilliantly the tripos and became a fourth
wrangler. and on October 31. 1839 he was elected Fellow of Gonville
and Caius. his alma mater. However. his health failed. and he died of
influenza on May 31. 1841 in Sneiton (another village close to Notting­
ham).

1.10 Conventional mathematical physics. To solve linear prob­
lems exploiting superposition principle (-1.4) is the sole topic of con­
ventional mathematical physics. To this end (-18. 23), we need
Fourier expansion and its generalization in terms of special functions,

11Yu. A. Lvubimov, "George Green: his life and works (on the occasion of the
bicentenary df his birthday)." Physics-Uspekhi 37. 97·109 (1994).

11



which turn out to be eigenfunctions of ordinary differential equation
eigenvalue problems (-735). Thus, we must learn how to solve (linear)
ODEs (-724). Complex analysis (-74-10) is a prerequisite for studying
special functions. These topics perhaps exhaust conventional mathe­
matical physics.

1.11 What is (should be) modern mathematical physics? An­
alytically exactly solvable problems are very limited. Most problems
we encounter in real life are not solvable by the standard conventional
tools. so that we often use computers. Consequently, it is very impor­
tant to know representative numerical methods.

Even if the reader could produce numbers (flood of numbers) with
the aid of a computer. how is she sure about her numerical result? It is
of course important to know various problems and difficulties in numer­
ical analysis (-731). but it is probably more important to have sound
mathematical intuition about the qualitative features of the equation.
Hence. we should clearly know relevant theorems on qualitative aspects
of the problem (-728-30).

Furthermore. if we could construct an analytical approximation.
our understanding of the problem is often greatly enhanced. There­
fore. the lecturer believes that the modern applicable analysis must
have three pillars:
(1) Analytic exact methods and relevant basic theorems (eg.. existence
and uniqueness) [This is the conventional part.]
(2) Computational methods. and
(3) Approximation methods and qualitative approaches (with relevant
theorems ).

Due to the limited time available. really important topics (2) and
(3) must be excluded from the course. However. the lecturer wishes to
distribute bits of related topics throughout the course.

1.12 PDE VS. other modeling tools. In these notes we mainly
discuss PDEs. That is. we discuss the models of Nature in terms of
continuum mathematics. PDEs are often used to describe macroscopic
features of Nature (-7alA.l). Hence. whether Nature is actually con­
tinuous or discrete at very small scales should be an irrelevant ques­
tion. In other words. lattice or discrete models and continuum models
should be indistinguishable.P when PDE modeling is useful. On the
other hand. in order to use computers, discrete descriptions are much
more convenient than continuum ones. Consequently, it is often com­
putationally advantageous to use discrete models: cellular automata,
coupled maps. cell-dynamical systems. etc. It is not a wise attitude to
claim that continuum description is more fundamental or less so than
the discrete description. In practice. we should be able to go between

12This is. of course. the main idea behind lattice models of field theories, and
numerical schemes. Riemann (-7.15) considered this possibility, too. in his famous
lecture (-2D.2) delivered in the presence of Gauss.
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(1.37)

these descriptions as easily as possible. This attitude is especially ad­
vantageous in using computers productively as a tool to study Nature.

Discussion.
{A)13 Let {t't{n)} be the set of values (say. between 1.5 and -1.5) on a torus (i.e.•
the lattice with a periodic boundary condition) whose point is denoted by n at time
tEN. Assume that

t,!'t+ 1 ( n) = ct,!'t (n) + It (n) - «It (n )))•

where c E ro.i]. «.)) is a local average (-1.13). and

It(n) == .4 tanh lI't{n) - t'dn) + 0.5[«t;·t(n))) - t,!'t(n )]. (1.38)

(I) For c = 1 show that the total sum of t;'t{n) over the lattice is time independent.
(2) If c = 1 and A. E (0.1). then. t't{n) - constant eventually.
(3) What happens if c = 1 and A = 1.3. wit h the spatially uniform random condi­
tion of t'o (n) E [-0.05. 0.05]? Guess the behavior.
(4) In the case (3). if c = .97. what happens? Why don't you simulate the system?
(B) This type of discrete models have been used extensively in materials science.
The latest and perhaps the state of the art example is ~1. Zapotocky, P. ~1. Gold­
bart. and :X, Goldenfeld. Phvs. Rev. 51. 1216 (1995) on liquid crystals,

1.13 Discretization of ~ - intuitive meaning of Laplacian. As
we will see later (....... 1.15. for exampIe) discretization is a useful way to
understand PDEs.

If we discretize the partial derivative (-2B.l) as

'II-'( X + 8xil - '1/'( x)
8x;

(1.39)

where 6Xi is a small increment of the i-th coordinate component. x is
understood as the position vector. and 6Xi = 18xJ then the second
derivative reads

(1.40)

Hence. the Laplacian (1.1) can be approximated as

(1.41)

where nn denotes all the nearest neighbor lattice points y of x. and we
have assumed that all 6Xi have the same magnitude 8.

13y . Oono and S. Puri. Phys, Rey. Lett. 58. 836 (1987).
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l1'1/; ex (('1/;)) - '1/;, (1.42)
where (( )) denotes the local average.l" Actually, (1.42) is a useful re­
lation in the numerical study of PDE. 15 Since most PDEs cannot be
solved analytically, numerical means is vitally important. We will dis­
cuss rudiments of numerical solvers of typical PDEs later (-+31).

Notice that the first term in the curly brackets is the average value
of 1/J on the lattice points surrounding e. Hence, the intuitive (and
physical) meaning of the Laplacian is the difference of a function value
and its local average:

Discussion
(A) A general method to see the order of accuracy (in the small increment limit) of
a discretization scheme is to use the Taylor expansion formula like .

J(t + bt} = f(t} + MJ'(t} + ~6t2 f"(t) + R. (1.43 )

Here R is the remainder term. Notice that the formula can be used if f is twice
differentiable (-A3.15).
Important Remark. However. the Taylor expansion metho-i tells us about the
accuracy of the scheme only in the small increment limit. If the increments are
not infinitesimal. then the practical accuracy is a much more subtle problem. An
example is the following discretization.
(B) Consider the following discretization of the Laplacian in 2-space;

l;P{-60dO. O]+16(1:[1. O]+d-l. O]+e[O. 1])+1.,[0. -1])-(t;·[2. O]+v[-2.O]+ti·[O. 2]+1.'[0. -2])}.
(1.44)

which is supposedly fourth order accurate (here l,>[a.b] == ~·(aii.b6)). Confirm this
statement. Then. discuss whether this is a good formula to adopt when we cannot
afford a very small spatial increment 6.
(C) Consider the discretization of the Laplacian on the face centered cubic lattice
(use only the nearest neighbor points). (A simpler version of this problem is the
2-space counterpart on the triangular lattice. ) How accurate is it?

1.14 Ubiquity of Laplacian. Let us suppose that 'I/; is a small
displacement of an isotropic and homogeneous membrane in the z­
direction (perpendicular to the xy-plane). Then, according to 1.13, l1'1/;
is the difference between '1/;( x) and its averaged surrounding heights. If
the membrane wishes to maintain a flat shape (i.e.. the flat state is
stable or the lowest energy state) .16 then there must be a restoring

14See the spherical mean value theorem (-29.4) for harmonic functions. The
reader will realize how fundamental this interpretation is.

15:1\1. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover
19i2). 25.3 summarizes discretization of partial derivatives (p883-). but notice that
the listed schemes are very conventional.

16 Anthropomorphic modes of thinking are often effective in understanding
physics. after all we are matter. no less. no more.
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force in the a-direction which is an increasing function of f:::.¢. If the
displacement is small, then the restoring force must be proportional to
f:::.'l/J. This explains why the Laplacian is ubiquitous.

If the membrane can be regarded as a mechanical system, then
Newton's equation must be true at each space point, so that we get the
wave equation: o;'¢ oc D.7/J.

If the displacement governs the relaxation of 7/J, then we get the
diffusion equation: Ot'¢ oc D.'¢P In this case, the final stationary state
should be time-independent, so that it must be governed by the Laplace
equation: D.'¢ = O.

Exercise.
(1) Show that the Laplacian is the only spherically symmetric second order differ­
ential operator (d. 16.2).
(2) Compute .l(ljr) in d-space (r '#O. -+16A.2-3).

1.15 Utilize discretization to understand PDE. Differentiation
with respect to time can also be discretized as

O'¢ '¢(t + bt) -1},(t)--ot 6t
(1.45)

Consider the diffusion equation in 2-space. Space-time discretization
of the diffusion equation gives

·~)(t + bt) - 'l!'(t) = D 1}'(x + 6xd + '~'(x - 6xd + 7/J(x + OX2) + 7/J(x - 6X2) - 47/J(x)
bt ~ ,

(1.46)
where OX; is a small increment along the z-th coordinate. This dis­
cretization scheme is called the simple Euler scheme (-31.8). Notice
that on the simple square if the values of the function on a point x and
on its all nearest neighbor points at time t are known. then the value
of the function at X at the next time step is uniquely determined. This
implies that we must have as an initial condition all the function values
on the lattice points at the initial time. This suggests (correctly'<) that
to solve the diffusion equation. we must impose the initial condition:
1}' all over the domain of the problem at the initial time. We will dis­
cuss the boundary conditions with the aid of simple discretization later
(-1.18(4)).
Warning. \"hen we wish to solve a PDE numerically, the increments cannot be

liRela.xation processes must be irreversible. so that the equation must not be
time reversal symmetric. In contrast. the equation of motion must be symmetric.

J8For most physicists. this type of heuristic reasoning is practically very useful.
In most cases the conclusions obtained by such a heuristic approach is fully justified
mathematically.
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infinitesimal. Hence. even if conservation laws (such as the one for probability,
energy. mass, etc.) are satisfied and the symmetry (like spatial translational sym­
metry. isotropy) recovered in the zero increment limit for a scheme, it does not
mean that the scheme is practically usable. However, for our purpose of under­
standing the behaviors of a PDE under various auxiliary conditions. we need not
worry about these practically very important questions, so we may use the simplest
discretization scheme as Euler's scheme.D

Discussion.
(l) Apply the similar reasoning to the wave equation. and discuss the initial condi­
tion.
(2) For the wave equation. can we impose initial and the final conditions?

1.16 Classification of second order linear constant coefficient
PDE, principal part. Most generally. the following equation

F (Xl ... X ~I. fJI/J ... aV' a2
7/J ...) = 0

. • n' 'fl. aXI' , aX
n

• aX! . (1.47)

is called a partial differential equation. where F is a function of inde­
pendent variables. Xl' ....X n · the dependent variable 7/J and its partial
derivatives.l?

The order of the highest order derivative ill the PDE is called its
order. If F is linear w.r.t, derivatives. we call the PDE a linear PDE.20

A linear second order PDE with constant coefficientshave the fol­
lowing form:

where A.··· are constants. The highest order derivative terms (the
portion consisting of them is called the principal part) dictate the char­
acter of the PDE. so we pay attention to the principal part (cf. 28.10).
(1) If. by an affine transformation of the independent variables, we can
transform the principal part to tl7/J. we call the PDE an elliptic equa­
tion.
(2) If. by an affine transformation of the independent variables, the
principal part is transformed to that of the wave equation. we call it a
hyperbolic equation.

19 Although we will review some topics related to partial differentiation (-+2B),
the reader should be familiar with elementary analysis of functions with many vari­
ables.

20~otice that this definition is different from the physicists' use of the word
'linear' .
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(3) If. by an affinetransformation of the independent variables, the prin­
cipal part can be transformed to that of the Laplace equation on the
hyperplane (a hyperplane of the d-space,:ll that is, a (d - 1)-subspace
of d-space), then the equation is called a parabolic equation. For 3­
dimensional diffusion equation, we consider it in 4-space (space + time)
and its principal part is the spatial Laplace equation. 3-space is a hyper­
plane of 4-space. Hence, the diffusion equation is a parabolic equation.

In 2-space. let
D =AC - B 2, (1.49)

which is called the discriminant. Depending on its sign the type of a
second order linear PDE is classified as follows: 22

(1) if D > O. we call the PDE an elliptic equation.
(2) if D < O. we call the PDE a hyperbolic equation.
(3) if D = O. then we call the PDE a parabolic equation.

Exercise.
Consider

aZl' a'll' aZl!'
A ~ 2 + B a a + C ~ Z =O. (1.50)

vXI Xl Xz vX'l

where A.' , . are constants, For each case of (1)-( 3) find an actual change of variables
to convert the aboye equation to the 'canonical form' [i.e.. the form without mixed
second order derivatives}.

(1.52)

Discussion
(A) The following equation is called Lagrange's equation for minimal surfaces:

(1 + u~)uu + (1 + u;)uYl/ - 2uzyyuzl/ = 0, (1.51)

where ;; = u(x, y) is the equation of a minimal surface, the surface whose area is
minimum under a given shape of the boundary (like a soap film), This is an elliptic
equation,
Warning, However. for nonlinear PDE, its type can change dependent on the
solution.23

(B) If the coefficients in (1.50) are not constant. then the type depends on the
space-time domain. The most famous example may be the Tricomi equation:

()2'1;.' a'll;
y ax'l + ay2 =0,

Describe its type according to the spatial domains.

ZId-object means d-dimensional 'object': thus 2-sphere is a two dimensional sphere
(the skin of 3-ball). etc

'l2E"en if the coefficients are the functions of space and time, locally. we can
classify the equation.

23Fluid dynamics and rheology are full of such examples. See, for example. D.
D. Joseph. Fluid Dynamics of Viscoelastic Liquids (Springer. 1990). This book
contains a readable introductory part.
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1.17 Linear PDE for practitioners. For a conventional physicist,
second order linear equations are the most important. 1.16 implies
that. in essence, she needs to understand only three equations.

In the traditional courses, the study of general properties of these
equations have been totally neglected. Their characteristic features are
summarized in 28-30.

Since most problems cannot be solved analytically, from a very
pragmatic point of view,
(1) Perhaps the most important step is to set up a PDE problem so
that it has a unique solution. After that, she can consult numerical
analysts.
(2) To demonstrate the unique existence of the solution is a main topic
of mathematical study of PDE after setting it up (-+1.21). but for
physicists. who trust the correctness of PDE. this is not a major ques­
tion.
(3) Practically. the easiest way to understand the uniqueness of the
solution is to consider an actual physical situation relevant to the PDE
and/or consider a discretization of the PDE (-+1.15) to ask whether
we can solve the resultant algebraic equation uniquely or not (-+31).
In the following entries. representative equations will be discussed from
these practical view points.

1.18 Parabolic equation. To understand parabolic equations. we
may use the diffusion equation as their representative (-+1.16( 3)). We
may understand the equation as describing the relaxation (-+1.14) of
the temperature of a body (-+alB.2)

fJT
7ft = DAT. (1.53 )

We need auxiliary conditions to single-out the solution:
(1) Initial condition. The value of temperature T everywhere on the
body at t = 0 is certainly needed to specify the future completely. This
should be enough mathematically as we have seen in 1.15.
(2) Dirichlet condition. Our daily experience tells us that if the
temperature at the boundary" of the body is specified, this should
uniquely fix the temperature inside for all later times (here we assume
(1) ). Specifying the values at the boundary is called a Dirichlet condi­
tion.

Suppose T1 and T2 are the solutions to the same diffusion equation
with the same initial and boundary conditions. Then. u =T1-T2 obeys

24The boundary must be "nice'. In these notes. we assume the boundary is piece­
wise smooth. If the boundary has a singularity like a spine. then the solution may
not exist. There is a famous counter example by Lebesgue. See the cone condition
in 1.19 (2) Discussion.
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From this consideration we realize that a more general condition can
be imposed as a good boundary condition called:

the same diffusion equation with the zero boundary condition and the
zero initial condition (homogeneous auxiliary conditionsj.P The tem­
perature of a body surrounded by a zero degree ice with the same
initial temperature should be zero forever. That is, T1 =T2 forever, or
the solution for the original initial-(Dirichlet) boundary value problem
should be unique. This argument is a standard, rigorizable argument
to demonstrate the uniqueness (-+28.4). once one has established the
existence of a solution.
(3) Neumann condition. It is a fundamental postulate of thermo­
dynamics (the so-called zeroth law?6 that if a system is thermally iso­
lated. it eventually reaches a unique equilibrium state. Hence, no heat
flux condition (= the adiabatic condition) at the boundary should also
uniquely specify the future. The consideration of the difference of two
systems as in (2) tells us that if the heat flux (that is. the (outward)
normal gradient of the temperature often denoted by aT/an) at the
boundary is specified (this boundary condition is called a Neumann
condition). then the future of the system should be uniquely deter­
mined.
(4) Use of discretization to understand boundary conditions.
These boundary conditions can be understood with the aid of space
discretization. Use the simple Euler scheme to discretize the Laplacian
as in 1.15. Consider a lattice point whose nearest neighbor point(s)
are boundary points. If we can uniquely determine the function values
at the next time step on the inside lattice points, we may conclude
that the boundary conditon is a good condition. In this way we can
understand the Dirichlet condition easily. The Neumann condition is
not this explicit. but the boundary slope helps to fix the value inside
the domain near the boundary uniquely as seen from the figure.

~
,r, c.h~r

CPn rJ.,ho ,

2·; Auxiliary conditions specifying the function to be zero are called homogeneous
conditions.

26H. B. Callen. Therm.odynam.ics (Wiley. 1960) is perhaps the best introduction
to thermodynamics.
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(1.55 )

(5) Robin condition." Spatial discretization allows us to under­
stand the above mentioned boundary conditions more algorithmically.
Use the discretization of the Laplacian in 1.13. To determine the RHS
of (1.46) in 1.15 we must be able to evaluate the Laplacian everywhere
in D. The Dirichlet and Neumann conditions allow us to uniquely fix
the value of the Laplacian even near the boundary. The same consider­
ation tells us that a more general condition allows us to fix the solution
uniquely:

aT
g(x) 81/ + j(x)T = h(x) on 8D. (1.54)

where j and 9 are nonzero functions. This is called a Robin condition.

Warning [Unbounded domain]. The intuitive discussion in the text works gen­
erally when the domain is bounded. However. if the domain is not bounded. then
bizarre things could happen. See the following example (see also 1.19 below).'l8
The following function u is a solution to the initial value problem

8u 8'lu

8t =8x 2

on R for t > 0 wit 11 t he initial condition U(x. OlE 0:

u(.I'. t) =1% dy [e"Y cos(xy + 2ty'l ) + e-ZYcos(xy - 2tg'l ) ] ye- y· /
3

cosy4/3.

(1.56 )
The energv conservation apparently fails. However, this is physically explainable.
because the propagation speed of heat is infinite (!1according to the diffusion equa­
tion (......28.10). We must forbid large amount of heat coming from infinity to avoid
such an unphysical situation. One way is to require that the solution to be bounded
e\'erywhere. 'l9

Exercise.
(l) According to ::\ewton's radiation law. the boundary condition for the tempera­
ture of a body is given by

:~ = K(To - T). (1.57)

where J..: is a positive constant. and To is the ambient temperature. Physically
discuss that the temperature evolution inside the body is uniquely determined.
Then. discuss the weak point of the physical argument.
(2) Tse the discretization approach to demonstrate that a Robin condition can
uniquely determine the solution for a diffusion equation. Tha is. do explicitly what

'li About Gustave Robin. 1855-1897, see T. Abe and I. Onda, G. Robin and his
contribution to mathematics. Internat . Symp, of History of Mathematics and Math­
ematical Education. Aug. 7-10. Gunma University (1987). Robin seemed to have
burnt all his papers before he died at the age of 45.

28p. C. Rosenbloom and D. Y. Widder. Am. Math. Month.. 65. 607 (1958).
29 Actually. a much weaker condition will do.
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is in 3 above,
(3) "'e wish to consider the following equation (the Cahn-Hilliard equation) on 10.1]
for t > O. What kind of auxiliary conditions do we need to ensure unique solutions?

(1.58)

Is 11 == 0 stable'?
Also consider a periodic boundary condition for the equation.
(4) The following equation is called the time-dependent Ginzburg-Landau (TDGL)
equatiorr'"

(1.59)

(\

r~
n

)\
lV' t-I--"--"'"--------4r tV f t-i'---.:..--.....------{( p

1.19 Elliptic equation. To understand elliptic equations (-1.16),
we may use the Laplace equation (-1.2) as the representative. We
may understand the equation as describing the equilibrium tempera-
ture distribution of a body which is governed by the diffusion equation
(-a1B.3), Hence. the boundary conditions discussed in 1.18 should
allow us to determine the solution uniquely. More directly. we can re-
peat similar arguments as in 1.18 (-29.9).
(1) Interior and exterior problems. The boundary value problem
whose domain is bounded (i.e., no infinity is contained) is called the in­
terior problem (cf. 26B.2). If the domain is not bounded. the problem
is called an exterior problem (cf. 26B.3). Exterior problems require not
only the boundary conditions but also some constraints on the growth
rate of the solution toward infinity (see 2C.17footnote. 26B.4).

Discussion.

30This is a standard equation describing the phase ordering kinetics.
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)

There are two infinite parallel walls spaced with a constant distance (say, 1m) and
the walls are grounded. Discuss the electric potential in the gap, or, more con­
cretely. discuss that it is not unique. [That is, demonstrate that the homogeneous
Dirichlet condition for an unbounded region D cannot single out a unique solution
to the Laplace equation on D.]
(2) Dirichlet condition. It is intuitively obvious that the Dirichlet
condition which fixes the surrounding wall (Le., this is an interior prob­
lem) temperature determines uniquely the entire steady temperature
distribution. This uniqueness can be demonstrated as in 1.18; if the
wall temperature is always at 0, then the inside must reach 0 eventually.

Discussion: External cone condition.
A sufficient condition for the solvability of a Dirichlet problem is the so-called ex­
ternal cone condition. At each point :r on the boundary. we must be able to place
a circular cone of solid angle e > 0 and height h > 0 lying completely outside the
domain except its apex at 2..sr .
(3) Neumann condition. We may consider the steady temperature
of a body under a prescribed heat flux distribution on the walL if the
net heat input is zero (otherwise. the temperature keeps changing). Un­
der a Neumann condition with this net constraint, we can argue that
the final temperature is unique up to the additive constant.
(4) A Robin condition can be discussed analogously as in the diffu­
sion equation case 1.18(5).

Exercise:
Write down a periodic boundary condition for the Laplace equation on [0.1] x [0.1]].
Is the solution unique?

1.20 Hyperbolic equation. To understand hyperbolic equations.
we may use the wave equation as the representative. This is a second
order differential equation in time. so our experience with the second
order ODE (e.g.. Newton's equation of motion) tells us that we need
not only the initial displacement but also the initial displacement speed
all over the body: 'l/Jt=o and Ot'I/Jt=o. This can be understood from the
following discretization as well:

'I/J(t + ot.x) - 'I/J(t.x) + ot8t'I/J(t.x).
O(IJ1(t + ot.x) - Ot'I/J(t.x) + 8t[Li'I/Jlt- (1.60)

The boundary condition can be understood exactly the same way as
the diffusion equation (-1.18). We can impose a Dirichlet, Neumann
or Robin condition (-30.5).

31 Courant-Hilbert.
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Exercise.
How can we realize (physically) a Robin condition at the boundary for a wave equa­
tion?

1.21 Then, what are mathematicians doing? The reader might
have obtained the impression that the unique existence of the solutions
to these equations is obvious. If these models are actually very faithful
models of our experience in Nature, probably the reader's impression
is not an oversimplification of the situation. However, how can we be
sure that these models really do model Nature accurately?

Appealing to our physical intuition to justify a PDE as a model
of a given phenomenon is a circular argument, because we assume that
the model behaves in accordance with our physical intuition. Therefore.
the only way to justify a PDE as a model of Nature is to check that the
purely mathematical outcome of the equations are consistent with our
understanding of the systems being modeled. Consequently. we need
a full mathematical theory of PDE (-29.11 for example). However,
practitioners can almost always trust in the extreme precision of the
PDE models (at least for classical linear problems). so that often we
can ignore rigorous arguments.

Discussion [Navier-Stokes equation].
The Xavier-Stckes equation (.....alE.6) is supposedly the fundament al equation gOY­
erning fluid motion. It is. however, derived (or rather. written down) intuitively by
Xavier. So far no one has been able to derive it in a well controlled fashion from
the particle picture of fluid. Even if we cannot derive it, if it works (agrees with
empirical results). the equation should be legitimate.

'Ye cannot solve the equation analytically in most cases. so that we must rely
on numerical schemes. However. it is not necessarily clear whether the numerical
scheme is faithful to the original equation. Hence. the agreement of numerical re­
sults with observed results does not necessarily empirically justify the equation. For
the justification. the unique existence of the solution is a prerequisite.

In the case of the 3D Xavier-Stokes equation. so far no one knows whether
the unique deterministic solution exists or not. One group of mathematicians (ma­
jority?) believe that the initial boundary value problem of the 3D Navier-Stokes
equation is well-posed (.....28.3). However. there are mathematicians who believe
that the 3D Navier-Stokes equation is defective (mathematically meaningless for
large Reynolds numbers). 32

32Representatiw references by the champions of both views may be: P. Con­
stantin and C. Foias, Na1rier·Stokes Equations (Chicago "CP. 1988): R. Temam,
Navier-Stokes Equations: theory and numerical analysis (North-Holland. 197i); O.
A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flou. (Gor­
don and Breach. 1969).
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